
UNIFACE DEVELOPMENT GUIDELINES

PART 2 - INTERNALS

Author: A J Marston

Date Created: 01 July 1999

Date Changed: 24 February 2002

Version: 04.008.000

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 2 version: 04.008.000

NOTICE

The information contained within this document is subject to change without notice.

Copyright (c) 1999-2002 Anthony J Marston
<mailto:tony@marston-home.demon.co.uk>
<mailto:TonyMarston@hotmail.com>
<http://www.marston-home.demon.co.uk/Tony>

The software described in this document is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License <http://www.gnu.org/copyleft/gpl.html> as
published by the Free Software Foundation <http://www.gnu.org/fsf/fsf.html>; either version 2 of
the License, or (at your option) any later version.

COPYRIGHT NOTICE:

This software and documentation is provided "as is," and the copyright holder makes no
representations or warranties, express or implied, including but not limited to, warranties of
merchantability or fitness for any particular purpose.

The copyright holder will not be liable for any direct, indirect, special or consequential damages
arising out of any use of the software or documentation, even if advised of the possibility of such
damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or portions
hereof, documentation and executables, for any purpose, without fee, subject to the following
restrictions:

1. The origin of this source code must not be misrepresented.
2. Altered versions must be plainly marked as such and must not be misrepresented as being the
original source.
3. This Copyright notice may not be removed or altered from any source or altered source
distribution.

The copyright holder specifically permits and encourages, without fee, the use of this source code
as a component in commercial products. If you use this source code in a product,
acknowledgement is not required but would be appreciated.

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 3 version: 04.008.000

TABLE OF CONTENTS

1. INTRODUCTION .. 1-1
1.1 PURPOSE ...1-1
1.2 SOFTWARE VERSIONS ...1-2
1.3 COMPUWARE DEVELOPMENT STANDARDS ..1-3

2. OBJECT NAMING STANDARDS.. 2-1
2.1 GENERAL..2-1

2.1.1 The System (or Application)...2-1
2.1.2 Assignment File..2-2

2.2 APPLICATION MODEL ...2-3
2.2.1 Model Name..2-3
2.2.2 Entity...2-3
2.2.3 Entity (non-database, defined locally in component) ...2-4
2.2.4 Entity (non-database, defined in application model) ..2-4
2.2.5 Subtype..2-5
2.2.6 Database View..2-5
2.2.7 Field..2-6
2.2.8 Primary Key Field...2-6
2.2.9 Technical Keys ...2-6
2.2.10 Foreign Key Field...2-6
2.2.11 Candidate Key Field ..2-6
2.2.12 Relationships ..2-6

2.3 APPLICATION LIBRARY ...2-7
2.3.1 Library Name..2-7
2.3.2 Counters..2-7
2.3.3 Global Constants..2-8
2.3.4 Global Procedures ...2-8
2.3.5 Global Variables...2-8
2.3.6 Glyphs..2-8
2.3.7 Help Text ...2-8
2.3.8 Include Procs..2-9
2.3.9 Menus and Menu Bars ..2-9
2.3.10 Messages ..2-10
2.3.11 Panels..2-10
2.3.12 Pop-up Menus ..2-10

2.4 TEMPLATES ...2-11
2.4.1 Entity Interface Templates..2-11
2.4.2 Field Interface Templates ...2-11
2.4.3 Field Syntax Templates...2-11
2.4.4 Field Layout Templates...2-11
2.4.5 Field Templates..2-11
2.4.6 Component Templates..2-11

2.5 COMPONENTS ..2-12
2.5.1 Component Name (Form, Service or Report) ...2-12
2.5.2 Component Instance ...2-12
2.5.3 Local Procedures ...2-12

3. DEVELOPMENT STANDARDS... 3-1
3.1 THE ENVIRONMENT...3-1

3.1.1 The Directory Structure...3-1
3.1.2 The Initialisation (.INI) File ..3-2
3.1.3 The Assignment (.ASN) File...3-3
3.1.4 Menu and Security system ...3-4
3.1.5 Component Templates..3-5

3.2 APPLICATION MODEL ...3-6
3.2.1 Keys..3-6
3.2.2 Relationships ..3-7
3.2.3 Field Labels...3-8
3.2.4 Field Sequencing ...3-9
3.2.5 Long String Fields..3-10
3.2.6 Default Trigger code..3-11

3.2.6.1 Entity Triggers...3-12
3.2.6.2 Field Triggers ..3-12

3.3 COMPONENTS ..3-13
3.3.1 Component Properties ..3-13
3.3.2 Window Properties...3-14

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 4 version: 04.008.000

3.3.3 Component Triggers..3-15
3.3.4 Local Procedures ...3-16
3.3.5 Local Constants..3-17
3.3.6 Button Bars..3-18

3.3.6.1 Action Bar ..3-19
3.3.6.2 Navigation Bar ..3-20
3.3.6.3 Column Bar..3-21

3.3.7 Widget Types..3-22

4. CODING STANDARDS .. 4-1
4.1 PROC LAYOUT STANDARDS ..4-1

4.1.1 Structure of Proc Modules ..4-1
4.1.2 Uppercase, lowercase, mixed case, appropriate case ..4-2
4.1.3 Entries..4-3
4.1.4 Operations...4-4
4.1.5 Parameters..4-5
4.1.6 Indenting and Spacing...4-6
4.1.7 Alignment...4-7
4.1.8 Line Continuation ...4-8
4.1.9 Substitution Delimiter...4-8
4.1.10 Comments...4-8

4.2 STANDARDS FOR USING FIELDS AND VARIABLES ...4-9
4.2.1 Field Qualification...4-9
4.2.2 General variables ($1 - $99)...4-9
4.2.3 Global variables ($$name) ...4-9
4.2.4 Component variables ($name$) ..4-9
4.2.5 Local variables..4-9

4.3 STANDARDS FOR USING MESSAGE FILE ENTRIES...4-10
4.3.1 Message text...4-10
4.3.2 Hint text..4-10
4.3.3 Help text...4-10
4.3.4 Field Labels...4-10
4.3.5 Button Labels..4-11
4.3.6 Questions ..4-11
4.3.7 Form Messages..4-11

4.4 USE OF LIBRARIES AND GLOBAL OBJECTS ..4-12
4.4.1 General ..4-12
4.4.2 Using Include Procs with Self-Contained Components ...4-12

4.5 PROC CONSTRUCT STANDARDS ..4-13
4.5.1 If-Else-Endif constructs ...4-13
4.5.2 Selectcase-Endselectcase constructs..4-14
4.5.3 While-Endwhile constructs..4-14
4.5.4 Repeat-Until constructs...4-14
4.5.5 Boolean..4-15

4.6 STANDARDS FOR USING TRIGGERS ..4-16
4.6.1 Component Template inheritance...4-16
4.6.2 Trigger layout..4-16
4.6.3 Local Proc Modules trigger...4-16

4.7 STANDARDS FOR INVOKING OTHER OBJECTS ...4-17
4.7.1 Setting $status..4-17
4.7.2 Argument with Return and Exit ..4-17
4.7.3 Checking return values of Proc instructions ..4-17
4.7.4 Standard return values for $status ..4-18
4.7.5 The use of $PROCERROR ..4-19
4.7.6 Testing for fatal errors ...4-20
4.7.7 Error Handling with Self-Contained Services ..4-21

4.7.7.1 Recording a Message..4-21
4.7.7.2 Displaying a Message..4-21

4.7.8 Invoking a UNIFACE component...4-22
4.7.8.1 A Form component...4-22
4.7.8.2 A Service component...4-23
4.7.8.3 A Report component..4-24
4.7.8.4 Choosing an Instance Name ..4-25

4.7.9 Invoking a 3GL routine..4-26
4.8 COMMUNICATION BETWEEN OBJECTS...4-27

4.8.1 Via the ACTIVATE command...4-27
4.8.1.1 Sending Parameters (to an ACTIVATEd module) ..4-27
4.8.1.2 Receiving Parameters (in the ACTI VATEd module)...4-28
4.8.1.3 Using OUT or INOUT parameters in a child form ...4-29

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 5 version: 04.008.000

4.8.2 Via the POSTMESSAGE command ...4-30
4.8.2.1 Sending a message ...4-30
4.8.2.2 Receiving a message ..4-31

4.8.3 Via the CALL command..4-32
4.8.3.1 Sending Parameters (on the CALL command) ...4-32
4.8.3.2 Receiving Parameters (in the CALLed Procedure)...4-33

4.9 DATA VALIDATION...4-34
4.9.1 New triggers..4-34
4.9.2 $dataerrorcontext...4-34

4.10 VERSION TRACKING..4-35
4.10.1 Version History ...4-35
4.10.2 Version Numbers Within Forms...4-36
4.10.3 Version Numbers Within Global Procs ...4-37

4.11 USE OF SELECTDB ...4-38
4.12 ACTIVE OBJECT HIGHLIGHTING ...4-39

4.12.1 Active Field..4-39
4.12.2 Active Occurrence..4-39

4.13 POPUP PROCESSING...4-40
4.13.1 Overview..4-40
4.13.2 POPUP Invocation...4-41
4.13.3 POPUP Coding...4-42

4.14 LOGICAL UPDATES ACROSS MULTIPLE FORMS..4-44
4.14.1 Multiple forms with Single Dialog...4-44
4.14.2 Multiple Forms with Multiple Dialog...4-46

4.15 ONLINE HELP...4-47
4.15.1 Show Help...4-47
4.15.2 Keyboard Map...4-47
4.15.3 About..4-47

4.16 OBTAINING NEXT NUMBER IN A SEQUENCE...4-48
4.16.1 Uniface Counters ...4-48
4.16.2 Runtime Retrieval...4-50
4.16.3 Database Triggers ...4-51
4.16.4 Database Procedures..4-51
4.16.5 Database Counters..4-52

4.16.5.1 Single Control Record..4-52
4.16.5.2 Multiple Records in a Single Control File ...4-52
4.16.5.3 Multiple Records in Multiple Files ..4-53

4.17 LIST PROCESSING...4-54
4.17.1 Application Database...4-54
4.17.2 Application Model...4-56
4.17.3 Application Message File ..4-57
4.17.4 Manipulating List Contents at run time...4-59

4.18 HITLIST PROCESSING..4-60
4.19 AUTOMATIC RETRIEVE IN LIST FORMS ...4-61
4.20 AUTOMATIC REFRESH OF CHILD INSTANCES..4-62
4.21 APPLICATION STARTUP AND CLOSEDOWN...4-63

4.21.1 Application Startup...4-63
4.21.2 Application Closedown ..4-63

5. TIPS AND TRICKS .. 5-1
5.1 ENTERING PROFILES BEFORE A RETRIEVE ...5-1

5.1.1 Profile and Results in the same screen..5-1
5.1.2 Profile in a screen of its own...5-1

5.2 WHEN NULL EQUALS INFINITY ...5-2
5.3 TESTING FOR A RANGE OF VALUES ...5-3
5.4 HELP TO LOCATE ENTRIES IN THE MESSAGE FILE..5-3
5.5 PAUSING RETRIEVES ON HIGH-CAPACITY DATABASE TABLES ..5-3

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 6 version: 04.008.000

TABLE OF APPENDICES

Appendix A: Widgets - Standard Entries... 1
Appendix B: Fonts - Standard Entries.. 2
Appendix C: Field Interface Templates - Standard Entries 3
Appendix D: Field Syntax Templates - Standard Entries.. 4
Appendix E: Field Layout Templates - Standard Entries .. 5
Appendix F: Field Templates - Standard Entries .. 6
Appendix G: Global Procedures - Standard Entries .. 7
Appendix H: Global Variables - Standard Entries ...34
Appendix I: Format for Message File Entries...35
Appendix J: Global Messages - Standard Entries...36
Appendix K: Dialog Types - Standard Values..38
Appendix L: Menu Bars - Standard Entries ...39
Appendix M: Panels - Standard Entries..40
Appendix N: Global Constants - Standard Entries...41
Appendix O: Include Procs - Standard Entries ..42
Appendix P: Checklist for creating a new Application ...43
Appendix Q: Checklist for creating a new Application Model......................................44
Appendix R: Checklist for creating a new UNIFACE Component..................................45

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 7 version: 04.008.000

Amendment History

01.000.000
to

03.004.000

April 1995

May 1999
Versions produced in a previous life.

04.000.000 July 1999
Total Rewrite.

04.001.000 18th July 1999
Made the following changes to include Column Buttons:-
a) Amemded section 3.3.6 Button Bars.
b) Added section 3.3.6.3 Column Bar.
c) Added fCOLUMN_BUTTON to Appendix A Custom Widgets.
d) Added COLUMN_BUTTON to Appendix C Field Interface Templates.
e) Added COLUMN_BUTTON to Appendix D Field Syntax Templates.
f) Added COLUMN_BUTTON to Appendix E Field Layout Templates.
g) Added COLUMN_BUTTON to Appendix F Field Templates.
h) Added COL_BUTTONS to Appendix G Global Procedures.

04.002.000 19th December 1999
a) Changed prefix of valrep lists in message file entries from ‘list_’ to ‘v_’.
b) Updated section on SELECTDB to include note regarding Object Services.
c) Added section Appendix N: Global Constants - Standard Entries.
d) Added section Appendix O: Include Procs - Standard Entries.
e) Added section 4.7.7 Error Handling with Self-Contained Services.
f) Added procs ENTITY_LOAD and ENTITY_UNLOAD to Appendix G.

04.003.000 27th November 2000
a) Added DEFAULT_LANGUAGE to Appendix G Global Procedures.
b) Added READ_INNER_ENT to Appendix G Global Procedures.

04.004.000 24th January 2001
a) Added section 4.21Application Startup and Closedown.
b) Added SAVE_VARIATION to Appendix G Global Procedures.
c) Updated Appendix P:Checklist for creating a new Application.

04.005.000 22nd April 2001
a) Changed Copyright page.
b) Added CHK_TRAN_ACCESSQ, IGNORE_MESSAGE, PRINT_LIST and

SOUNDEX to Appendix G Global Procedures.

04.006.000 26th November 2001
a) Changed global proc LMK_TRIGGER to LMK_PROC.
b) Changed global proc VLDK_TRIGGER to VLDK_PROC.
c) Added global procs ENCRYPT and DECRYPT.
d) Added global procs FRGF_PROC and FRLF_PROC.
e) Added include proc LMK_PROC.
f) Added include proc VLDK_PROC.
g) Added include proc VLDF_TRIGGER.
h) Added include proc VLDO_TRIGGER.
i) Changed Appendix J Global Messages.
j) Changed section 3.2.6.1 Entity Triggers.

UNIFACE Development Guidelines (Internals)

24 February 2002 Contents Page 8 version: 04.008.000

04.007.000 2nd January 2002
a) Changed 4.15.1 Show Help.
b) Added CHK_TAB_ACCESS to Appendix G Global Procedures.
c) Changed LAUNCH_TAB_PAGE in Appendix G Global Procedures.
d) Changed HELP_PROC in Appendix G Global Procedures.

04.008.000 24th February 2002
a) Changed Appendix F: Field Templates to include TIME_FROM, TIME_TO,

VALUE_FROM and VALUE_TO.
b) Changed Appendix G: Global Procedures to include AUDIT_BEFOREPROC,

AUDIT_AFTERPROC, AUDIT_EXCLUDE and GET_SESSION_DATA.
c) In Appendix G: Global Procedures changed OK_PROC, STORE_PROC,

STOREQ_PROC, COMMIT_PROC, ROLLBACK_PROC

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 1-1 version: 04.008.000

1. INTRODUCTION

1.1 PURPOSE

This document describes a set of standards and guidelines that could be used for the development
of computer systems using the UNIFACE 4th Generation Language deployed on a desktop PC
running the Microsoft WINDOWS 9x operating system. These Development Guidelines have been
split into the following parts: -

⇒ Part 1 deals with the External view of the software (ie: the "look and feel"). This will be of
particular interest to the client as it shows which features are currently available, and indicates
how they can be used to interact with the computer system.

⇒ Part 2 deals with the Internal workings of the software (ie: how it is actually constructed). This

will be of interest to the development team as it gives examples on how the features described
in Part 1 can be implemented, and would therefore be of little interest to the client.

⇒ Part 3 documents the Component Templates used in development.

⇒ Part 4 documents an XAMPLE Application which provides a working demonstration of these
guidelines.

These guidelines have been put together using the experience gained while developing various
systems using UNIFACE. Their purpose is as follows: -

♦ To identify the various facilities and options that are available to the system designer that can
be used to achieve particular objectives.

♦ To examine the pros and cons of each method so that the optimum one can be chosen for
each particular set of circumstances.

♦ To encourage the production of software that achieves the desired objectives as efficiently as

possible and in a user-friendly manner.

♦ To encourage the production of software that has a consistent “look and feel” between its

individual components so that the user does not have to go through a different learning curve
with each component.

♦ To encourage the production of software that has a consistent “look and feel” with other
software products that may be encountered by the user so that he can switch from one product
to another and feel that he is in familiar, not alien territory. The Microsoft Windows Graphical
User Interface (GUI) contains many “controls” that are used in a standard fashion within every
software product developed for that platform. UNIFACE provides “widgets” which match a
subset of these controls so that the same functionality can be provided.

♦ To encourage the construction of software using common techniques and, where possible,
common components or routines so that they can be easily maintained and enhanced by any
member of the development team, and not just the original author.

♦ To discourage the use of non-standard components, or features that are undocumented and/or

unsupported, so that the software can be easily upgraded to subsequent releases of UNIFACE
or other supporting software.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 1-2 version: 04.008.000

1.2 SOFTWARE VERSIONS

This document has been constructed with the following software versions in mind: -

⇒ UNIFACE version 7.2.06

⇒ Microsoft WINDOWS 95/98/ME/NT

 There may be differences with the versions of Uniface that are available on other platforms, but
they are outside the scope of this particular document. Certain widgets (controls) are not supported
on earlier versions of Microsoft Windows, and screens designed for a GUI will not perform very
well if deployed on a Character-based User Interface (CHUI).

New versions of UNIFACE may be released from time to time. Each release may contain new
features, changes to existing features, or even the deletion of redundant or superseded features.
Before any new release can be successfully deployed the contents of this document may need to
be reviewed for accuracy.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 1-3 version: 04.008.000

1.3 COMPUWARE DEVELOPMENT STANDARDS

Compuware have produced a document titled UNIFACE Seven Standards 1(dated 22nd April 1998,
part number 1051357200) which contains a great deal of sound advice. It identifies every object
that can be encountered within UNIFACE and provides the following information:

• The recommended naming standard for the object type, with the following attributes:

Naming rule This indicates how the name is determined.

Recommended maximum length The upper limit for the length of the object name. This can
deviate from the length restriction as imposed by UNIFACE.

Unique within Indicates any uniqueness constraints, eg: is the name of the
object unique within the application model, the information
system, or perhaps unique within the whole organisation?

Example These may show several examples of applying the naming
conventions, specifically for names with a complex syntax.

• Any restrictions that may apply:

UNIFACE maximum length This is the upper limit on the object name that is imposed by
UNIFACE.

Reserved words from Identifies potential conflicts with names used by other
environments.

Allowed characters Lists the characters that can be used for the name, as allowed
by UNIFACE. Frequently this will be a combination of letters
(A-Z), digits (0-9) and underscores (_).

Others Any other restrictions which may be relevant.

• Remarks

There may be a choice between several alternatives. This section gives the reason for the Rule
and supplies some additional considerations and alternatives.

The following sections will not duplicate the information that is contained within the Compuware
document, but will identify the extensions that have been adopted by the author of this document.

1 This has since been superceeded by a document titled UNIFACE Naming Conventions (dated July 1999,
part number 151010572-00)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-1 version: 04.008.000

2. OBJECT NAMING STANDARDS

2.1 GENERAL

2.1.1 The System (or Application)

1. The maximum length of this code must be less than the maximum length of the object name to
which it will be prefixed.

2. Each Application (or System) will have its own name, which can be reduced to its initials to

yield a system mnemonic or OWNER_CODE. This should preferably be two characters long,
but no more than three. For example, the MENU system would be reduced to MNU.

3. This mnemonic should be used for the following:-

• The name of the Application Model.
• The name of the Application Library.
• The prefix for all Component names.

4. If a large system needs to be broken down into a series of subsystems, the third character

within this OWNER_CODE should be altered (or added) so that the first two characters will be
consistent within the system as a whole.

5. If you develop different systems for different clients (eg: within a software house) each system

should have its own development environment so that all data, initialisation and assignment
files can be kept separate from other systems. Each system tends to be referred to as a
Project, therefore OWNER_CODE is interchangeable with Project Code.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-2 version: 04.008.000

2.1.2 Assignment File

1. A minimum of two assignment files should be available with different settings - one for the
development environment which obtains objects from the development database, and a
second for the live or test environments which obtains objects from the DOL and URR files.
Name each file accordingly.

2. If you are using a different assignment file for each application, but do not want to put all the
company-wide assignments in every application-specific assignment file, you can create an
overall (company-wide) assignment file. This file will contain all global assignments. The
application-specific assignment file will contain the application -specific assignments for that
application. Use the “#FILE assignment_file” statement to include the overall assignment file at
the appropriate place with the application-specific file. The overall assignment file should be
named as mentioned above.

3. User-specific assignment files could be named after the user’s logon name, and should be
placed in one central asn-file directory.

4. Section headers must be used in order to take advantage of the partition manager. Available
section headers are:

[SETTINGS] for UNIFACE system settings
[DRIVER_SETTINGS] for driver-specific settings
[FILES] to specify the location of non-DBMS files
[PATHS] to direct paths to DBMS, network or GUI drivers
[ENTITIES] to direct application model entities to paths
[LOGICALS] to define logical symbols for use in proc code
[SERVICES_EXEC] to direct service components to machine nodes
[REPORTS_EXEC] to direct report components to machine nodes
[WIDGETS] to define widget properties

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-3 version: 04.008.000

2.2 APPLICATION MODEL

2.2.1 Model Name

1. The application model should be named after the system/application to which it belongs (see
section 2.1.1 The System (or Application) for more details).

2. An assignment file setting of “*.<application model name>“ maps the functionally grouped

entities to one DBMS.

3. If a separate application model is generated for a subsystem it would be better to add on (or

change) a suffix rather than invent a new name. Application models which are related should
contain the same leading characters (prefix) for ease of identification.

2.2.2 Entity

1. Always refer to the DBMS Specific Guide in the UNIFACE documentation and operating
system and DBMS/file system supplier information before naming entities. Some restrict
identifiers to 30 characters, while others use only the first 21 characters of a table name when
creating procedures.

2. Entity names should always be in the singular (eg: CUSTOMER, not CUSTOMERS). The fact

that an entity may contain multiple entries is irrelevant - any multiplicity can be derived from the
existence of one-to-many relationships.

3. Entity names should preferably be unique within the enterprise. Although UNIFACE allows the

same entity name to be used within different application models, if they are mapped to the
same database they will use the same physical table. If it is not possible to prefix entity names
with {OWNER_CODE}_ in the application model, then it can be done in the assignment file.

4. The DBMS type should always be declared as DEFAULT within the application model. This

can be assigned to a particular database type at run time by an entry in the .ASN file.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-4 version: 04.008.000

2.2.3 Entity (non-database, defined locally in component)

1. To avoid confusion with ‘normal’ entities these should be named ‘DUMMY’ or ‘DUMMYn’.

2. The non-database property will disable the retrieve/o instruction. If it is necessary to use this
instruction (eg: in a Select/Remove type of user interface) then this object should be defined
within the application model, but with the Read/Write triggers made empty.

3. If the same non-database entity is referenced in several components (eg: ACTION_BAR,
NAVIGATION_BAR) it may be worthwhile to define it within the application model.

2.2.4 Entity (non-database, defined in application model)

1. This facility should be used for non-database entities that are commonly used throughout the
application. The following “dummy” entities are used routinely within these standards:-
• ACTION_BAR - to contain all action buttons.
• NAVIGATION_BAR - to contain all navigation buttons.
• RETRIEVE_PROFILE - to enter selection criteria at the top of List forms.
• COLUMN_BAR - to contain label buttons above each row in a multi-row form.

2. Because these entities only exist within the repository, there is no need for uniqueness within
the enterprise.

3. The non-database property will disable the retrieve/o instruction. If it is necessary to use this
instruction (eg: in a Select/Remove type of user interface) then change this property, but empty
the Read/Write triggers.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-5 version: 04.008.000

2.2.5 Subtype

1. For subtype naming, DBMS length restrictions do not need to be taken into consideration
because subtypes are mapped to the DBMS table or file that corresponds with the entity.

2. If a subtype is created just to allow the separate entry of profile values to be used in a retrieve,

consider the use of a dummy entity called RETRIEVE_PROFILE instead.

3. The subtype name should preferably be the supertype name with a numbered suffix (_S01,
_S02). This helps to immediately identify the table as a subtype, and identifies its supertype.

4. If more meaningful values for the suffix are required they should not be too long, eg:

• _PREV (for the previous entry in a sequence)
• _NEXT (for the next entry in a sequence)
• _SNR (for the senior entry in a hierarchy)
• _JNR (for the junior entry in a hierarchy)

5. Other values that may be used include the following:

• LOCATION_FROM and LOCATION_TO (different relationships to LOCATION)
• INVOICE_PAID (subset of INVOICE)
• MANAGER (type of EMPLOYEE)

6. Any conditions that are specific to the subtype can be added to the entity triggers. Note that it is
not possible to change any of the field definitions or field triggers for a subtype.

2.2.6 Database View

1. Database Views can only be employed when supported by the underlying database. The use
of Views may restrict the range of database engines that could potentially be used to support
the application.

2. UNIFACE itself does not recognise whether an entity is used as a table or a view.

3. It is recommended to store views in a separate database model, eg: {owner_code}_VIEW.
Care should be taken not to use this application model when generating Create Table scripts.

4. To avoid confusion with ‘real’ entity names, and to avoid conflicting with identical names in
other models, it is recommended that a prefix be used, either “V” or “V_”.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-6 version: 04.008.000

2.2.7 Field

1. Although UNIFACE allows field names of up to 32 characters it is recommended that no more
than 14 be used (or should be unique within the first 14 characters). This will allow the field
name to be used as the message id for retrieving text from the message file.

2. Although field names must be unique within an entity, it is possible to use the same name on

multiple entities even if there is no relationship between them. This practice should be avoided
as a field’s name is used to identify other associated objects (eg: label text, help text), so a field
name should not be re-used unless it can share the same context. For example, entities named
Account, Invoice and Invoice_Line may each require a field to hold a status value, but these
should be given separate names such as Acc_Status, Inv_Status and Inv_Ln_Status.

2.2.8 Primary Key Field

1. It is recommended that the primary key of an entity should be constructed from the entity name
with a suffix of “_ID”. This makes it easy to identify the primary key in a long list of field names.

2. Avoid using generic names for all primary keys. If the primary key of entity ‘A’ is ‘ID.A’, and the
primary key of entity ‘B’ is ‘ID.B’ and ‘A’ is linked to ‘B’ in a one-to-many relationship then ‘ID.A’
has to be converted to ‘A_ID.B’ before it can be used as the foreign key on ‘B’. This results in
the situation were two fields (‘ID.A’ and ‘ID.B’) have the same name but different contexts, and
also were two fields (‘ID.A’ and ‘A_ID.B’) have different names but the same context. This
could cause problems when manipulating data in associative lists.

2.2.9 Technical Keys

1. Avoid the unnecessary use of technical keys. If a table already contains a satisfactory unique
identifier there is no need to create another one.

2.2.10 Foreign Key Field

1. If the name of the foreign key is identical to the name of the corresponding primary key, and
the primary key is constructed from “<entityname>_ID”, this makes it easier in a field list to
identify which is a foreign key, and which to which entity is it related.

2. Where multiple relationships to the same entity are implemented, using subtypes, use the

name of the subtypes for the fields that act as foreign keys. For example, the Person entity
contains the fields Country_Of_Birth and Country_Of_Residence to define two relationships
between Country and Person. Alternatively you may add a meaningful suffix to the field name
to identify the difference, as in Location_Id_From and Location_Id_To, or Part_Id_Snr and
Part_Id_Jnr.

2.2.11 Candidate Key Field

1. It is recommended that any candidate keys should include a suffix of “_ID”. This makes it easy
to identify them as indexed paths.

2.2.12 Relationships

1. Relationship names are only required when creating referential integrity checks. This name is
used when SQL script files are generated by the Create Script utility.

2. It is recommended that the name be a combination of the first 10 characters of the ONE entity
followed by the first 10 characters of the MANY entity, separated by an underscore.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-7 version: 04.008.000

2.3 APPLICATION LIBRARY

2.3.1 Library Name

1. Each application should have its own library. This should be defined as the library in the
properties of each component within the application. It should also be defined as the setting for
$variation in the application’s INIT_PROC.

2. It is possible to change the library that is referenced at run time by altering the contents of
$variation. This would present a housekeeping problem in that it would require separate
copies of the same objects to be maintained in different libraries, therefore it is recommended
that each application use only one library.

3. The USYS library should be reserved for global objects (messages, glyphs, panels, menus)
that are not specific to any application. Standard entries are contained in:
• Appendix J: Global Messages
• Appendix L: Menu Bars
• Appendix M: Panels

4. The SYSTEM_LIBRARY should be reserved for global objects (procs, include procs, variables,
constants) that are not specific to any applications. Standard entries are documented in:
• Appendix G: Global Procedures
• Appendix H: Global Variables
• Appendix N: Global Constants

5. The STD library should be reserved for include. Standard entries are documented in:
• Appendix O: Include Procs

2.3.2 Counters

1. Do not use the USYS library for your counters. Do not change the values of counters stored in
the USYS library.

2. A UNIFACE counter uses the Proc statements numgen and numset to create and maintain a

counter. These counters are stored in the table UOBJ.TEXT, which is committed through the
$UUU path. This is the easiest way to implement generation of keys.

3. The disadvantages of counters are:

• Copying counters into another run-time environment needs UNIFACE export and import
facilities.

• The counter value is committed immediately through $UUU, therefore it is not possible to
commit the counter value and the occurrence with a single commit.

• Because it is stored in UOBJ.TEXT counters cannot be used in a self-contained service.
• In a large network where the application is duplicated across multiple application servers it

will not be possible to share the same numbering sequence.

4. The use of UNIFACE counters is discouraged in these standards - please refer to section 4.16

Obtaining Next Number in a Sequence for more details.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-8 version: 04.008.000

2.3.3 Global Constants

1. These are referenced in code by enclosing the name with “<“ and “>“, as in “<auto_retrieve>”.
The name of the constant is replaced with the expression when the component is compiled.

2. A local constant with the same name may also be defined within an individual component. In
this case the value of the local variation is used in preference to the central definition.

2.3.4 Global Procedures

1. SYSTEM_LIBRARY should be used for system-wide objects (do not use USYS).

2. The standard global procs used within these standards are shown in Appendix G: Global

Procedures.

3. Application-specific objects should be defined in the individual application library.

4. Self-contained components cannot use global procedures, but alternatives can be defined as
Include Procs (described in a later section).

2.3.5 Global Variables

1. SYSTEM_LIBRARY should be used for system-wide objects (do not use USYS).

2. The standard global variables used within these standards are shown in Appendix H: Global
Variables.

3. Application-specific objects should be defined in the individual application library.

4. In a modal environment global variables are used to pass values from one form to another, but
in a non-modal environment there is a different mechanism for the passing of parameters, so
the use of global variables should be kept to a minimum.

2.3.6 Glyphs

1. The only glyphs used in these standards are:
• U_POPUP_BUTTON for the popup button
• MENULOGO for the default image in the logo screen

2.3.7 Help Text

1. UNIFACE help text is not used with these standards as an alternative method of maintaining
and displaying text is available. Please refer to section 4.15 Online Help for more details.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-9 version: 04.008.000

2.3.8 Include Procs

1. Include Procs are an alternative for global Procs. However, there are some differences:
• Include Procs are not compiled immediately when defined in the library. They are expanded

and compiled during the compilation of those components which reference them.
• Include Procs are part of the .frm, .srv or .rpt file, while compiled global Procs are saved

in the UOBJ.TEXT table or a .dol file.

2. Include Procs are referenced using the #include statement:
#include {Library:}Module
If Library is omitted, the library of the current component is used. If no component library is
defined, the SYSTEM_LIBRARY is used.

3. A standard set of Include Procs are defined in the STD library for use in self-contained
components. These create local procs with the same name as global procs. This is especially
useful when the application model contains references to Procs which can only be satisfied
with locally-defined equivalents. These included procs have the same names as Global Procs
where they perform a similar function, but may contain minor alterations to allow them to run in
self-contained components. If any changes are made to these Include Procs then all
associated components must be recompiled so that the changes can be incorporated in the
compiled components.

4. Additional Include Procs are defined in library STD which can be used instead of keying in
commonly occurring blocks of proc code. A typical example is:

#include STD:FATAL_ERROR

which can be used instead of

if ($procerror) ; check for fatal error
 call PROC_ERROR($procerrorcontext)
 $status = <FATAL_ERROR>
endif
if ($status = <FATAL_ERROR>) ; check for fatal error
 call GET_MESSAGE ; display error messages
 return(<FATAL_ERROR>)
endif

2.3.9 Menus and Menu Bars

1. Menu bars can be assigned in the Start-up Shell and in forms, but can also be assigned in proc
code if required.

2. The menus used within these standards are detailed in Appendix L: Menus.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-10 version: 04.008.000

2.3.10 Messages

1. Messages should be obtained with the $text(id) function so that the message text can be
changed, or foreign language variants introduced, without the need to change any code.

2. Due to length restrictions it may be necessary to use numbers instead of letters in {name}.

3. The message types used within these standards are detailed in Appendix I: Format for
Message File Entries

4. The standard messages used within these standards are detailed in Appendix J: Global
Messages.

5. There can be many different messages associated with a particular topic, and it may help
locate them if the topic name (eg: START_DATE, END_DATE, QUANTITY) were to be defined
in the description field. Use upper case characters as this will make searching easier.

2.3.11 Panels

1. Panels may be referenced in the start-up shell, or in components.

2. Entries defined as Panels may be referenced as Pop-up Menus.

3. The Panel feature is not used within these standards as the relevant options are usually
available on command buttons within each component.

4. The standard panels used within theses standards are detailed in Appendix M: Panels.

2.3.12 Pop-up Menus

1. Pop-up menus are defined within the application library as Panels.

2. Prior to UNIFACE version 7.2 a pop-up menu could only be referenced in the start-up shell.
Separate menus can now be defined for fields, entities and components.

3. The fallback path is field -> entity -> component -> start-up shell.

4. The standard panels used within these standards are detailed in Appendix M: Panels.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-11 version: 04.008.000

2.4 TEMPLATES

2.4.1 Entity Interface Templates

1. Avoid names starting with the letter “U” to prevent confusion with UNIFACE objects.

2. Entity Interface Templates apply in situations where included entities are used. Because the

use of included entities is no longer recommended, Entity Interface Templates are hardly used

2.4.2 Field Interface Templates

1. Standard entries are detailed in Appendix C: Field Interface Templates.

2. See Field Template for further comments.

2.4.3 Field Syntax Templates

1. Standard entries are detailed in Appendix D: Field Syntax Templates.

2. See Field Template for further comments.

2.4.4 Field Layout Templates

1. Standard entries are detailed in Appendix E: Field Layout Templates.

2. See Field Template for further comments.

2.4.5 Field Templates

1. Standard entries are detailed in Appendix F: Field Templates

2. Having the possibility of sharing field interface/syntax/layout templates between several field

templates may not be practical. If a shared template were changed this would result in a
change to all the associated field templates. If it should ever be required to make changes only
to those fields which use a particular field template it would be advisable not to share any
interface, syntax or layout templates, but to use separate ones for each field template (using
the same name).

2.4.6 Component Templates

1. Standard entries are detailed in a separate document:
• UNIFACE Development Guidelines, Part 3 - Component Templates.

2. Do not modify any of the standard templates. Instead make a copy and add an owner code.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 2-12 version: 04.008.000

2.5 COMPONENTS

2.5.1 Component Name (Form, Service or Report)

1. Each form component name should conform to the pattern xxS####D where:
 xxS is the application prefix
 #### is the sequence number
 D is the dialog type from Appendix K:

2. Forms that can be grouped together into a ‘family’ should share the same sequence number.

The only difference in the name need be the dialog type.

3. Each service component name should conform to the pattern xxSZ#### where:

 xxS is the application prefix
 Z is the dialog type (eg: H for Hidden)
 #### is the sequence number

4. Because part of the form name is a meaningless sequence number it is essential that the

description/comments fields of form properties be completed to indicate the form’s purpose.

2.5.2 Component Instance

1. A component instance is an occurrence of a component that exists at run-time. The design
may call for only one copy of a component to be in existence at any one time, or it may allow
multiple copies to exist alongside each other. The name will therefore need to be constructed
differently depending on which choice is made:
• For a single copy use the component name, as this is already unique.
• For multiple copies construct a name which combines elements of the original component

name, plus an identifier for each separate copy.

2. Refer also to section 4.7.8.4 Choosing an Instance Name.

2.5.3 Local Procedures

1. In order to be easily differentiated from global procs all local procs should have an ‘LP_’ prefix.

2. Although local procs can be defined in almost any trigger, it is advisable to keep them all in the
<local proc module> trigger at component level, thus making them easier to find.

3. Components which are derived from component templates may have some local procs defined
in other usually redundant triggers. This is to allow local variations to be made in the <local
proc modules> trigger without losing the inheritance properties of these modules.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-1 version: 04.008.000

3. DEVELOPMENT STANDARDS

3.1 THE ENVIRONMENT

3.1.1 The Directory Structure

Rather than have all files residing is a single directory regardless of their file type, I prefer to break
them down into sub-directories. It looks much neater (in my opinion) and makes them easier to
observe and manage. The directory structure should resemble the following:-

• project directory
• DATA for application data

• MENU data for demonstration MENU system
• XAMPLE sample data for XAMPLE system

• DICT for development meta dictionary
• DOL for Dynamic Object Library
• URR for UNIFACE Runtime Repository
• EXP for UNIFACE EXPort files

• MENU for MENU EXPort files
• XAMPLE for XAMPLE EXPort files

• FRM for application forms
• MENU for MENU forms (optional)
• XAMPLE for XAMPLE forms (optional)

• IMAGES for image files
• PRO for procedure listings (from compilations)
• TRX for database conversion files
• TXT for application text files

• MENU for MENU text files
• XAMPLE for XAMPLE text files

Note that in a shared environment some of these directories may exist on a networked drive or a
central file server. If the data is held in a single database then the separate sub-directories will be
redundant.

The URR directory may be combined with the DOL directory to have a single place for compiled
objects.

The MENU sub-directory is used exclusively for the Menu system files.

The XAMPLE sub-directory is used exclusively for the dummy application that demonstrates
working examples of each of the component templates.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-2 version: 04.008.000

3.1.2 The Initialisation (.INI) File

The Initialisation file defines the appearance and behaviour of the UNIFACE application. It contains
numerous settings, among which is the following:-

Accelerator keys - to define short cuts for menu items
Widgets - widget properties (standard and custom)
Fonts - govern the application appearance

Default Widget Settings are shown in Appendix A:

Default Fonts are shown in Appendix B:

Various settings can be altered while running UNIFACE - from the system menu (activated via the
system box in the top left-hand corner of the screen) select the SETUP menu. Please refer to the
Environment Specific Guide, Chapter 2 Customisation for more details.

Although numerous components can be customised according to individual preferences it should
be pointed out that certain settings (eg: font sizes, screen sizes) should not be too different from
those that will be in use at the client’s site, otherwise the appearance of the screens may be
adversely effected.

There are three ways that UNIFACE accesses its .INI file, in the following order or priority:-

1) /ini=<name> on the command line.

2) <application>.ini in the windows directory.

3) usysXX.ini in the windows directory

When using the IDF only option (2) is excluded from the search path.

Since the majority of clients will be accessing the software via the use of an application server
rather than on local machines, the .INI file will also reside on the application server. In this case the
command line for the application will contain the /ini command. It is recommended that a version of
the .INI file be constructed which will be delivered to the client. This should be used when the
application goes through system testing.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-3 version: 04.008.000

3.1.3 The Assignment (.ASN) File

The Assignment file defines the environment for the application. It contains entries for the
following:-

• UNIFACE system settings
• Application settings (logical names and values)
• Specifies the language to be used for messages and help text
• Specifies the keyboard and device translation tables to be used
• Defines the location of all files used by the application

There are three ways that UNIFACE accesses its .ASN file, in the following order or priority:-

1) /asn=<name> on the command line.

2) <application>.asn (or idf.asn when using the IDF) in the working directory.

3) usys.asn in the directory specified in the .INI USYS section.

Unlike the .INI file processing, UNIFACE will read the usys.asn file then overlay any specifications
from (1) or (2)

The contents of this file should not need to be varied once created. However, there are some
settings that may be useful during system development:-

$search_object dbms_first This determines the order in which the UNIFACE application
looks for compiled objects. Possible sources are the dbms
file UOBJ.TEXT or a Dynamic Object Library (DOL) file. By
setting this option it will not be necessary to recreate the DOL
file before testing the application. The live application should
use the setting file_only.

$search_descriptor dbms_first This determines the order in which the UNIFACE application
looks for entity and signature (component) descriptors.
Possible sources are the dbms files ULANA.DICT and
USYSANA.TEXT, or the UNIFACE Runtime Repository
(URR) file. The live application should use the setting
file_only.

$putmess_logfile=<name.txt> Copy contents of message frame to a file (useful when
debugging).

$transcript_logfile=<name.txt> To contain the contents of what used to be the transcript
window.

$print_assignments Prints definitions from the assignment files to the message
frame. Where there are local and global assignments this will
show which is referenced first.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-4 version: 04.008.000

3.1.4 Menu and Security system

A standard menu and security system has been developed to act as a font-end to all systems. This
is described fully in a separate document. It consists of the following objects:-

Mnu*.frm compiled form components
Mnu*.svc compiled service components
Menu.aps start-up shell

Idf.asn assignment file for development
Menu.asn assignment file for test application
Usys7x.ini initialisation file with standard settings (widgets, fonts, etc)

STDuobj.dol compiled objects (for library MENU, SYSTEM_LIBRARY, USYS)
STDudesc.urr component signatures for menu forms
Field_template.exp field interface/syntax/layout templates
Component_template.exp Standard component templates

Initial_values.txt initial values for the menu database

To install this system please follow these steps:-
1. Copy files into relevant directories.
2. Import all the .exp files.
3. Compile all central objects.
4. Adjust the assignment file to identify the location of the MENU database.
5. Create an icon to run the MENU application.
6. Run the application.
7. As the MENU database is currently empty, the first screen will be a file box (refer to function

MNU_9010R in the Menu system documentation). Select file INITIAL_VALUES.TXT. After the
contents of this file has been loaded the filebox will be shown again. Press cancel.

8. The logon screen will be displayed - enter AJM (user id) and password (user password).
Alternative user id’s are MGR and MANAGER.

9. The first menu screen should be displayed - enjoy!

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-5 version: 04.008.000

3.1.5 Component Templates

Instead of building components from scratch it is possible within UNIFACE 7 to create a form,
service or report component from a component template. This results in a component which has
the basic structure and enough pre-loaded trigger code for it to function in the standard manner,
after which it can be customised by including any additional entities, fields or trigger code as is
necessary for it to meet its specific requirements.

Part 1 of this manual, which deals with the external look-and-feel of UNIFACE systems developed
using these standards, identifies a series of standard dialog types. Each one of these dialog types
has a corresponding component template, thus making it much easier for the developer to create a
component that corresponds to one of these dialog types.

These component templates are described in a separate document: UNIFACE Development
Guidelines, Part 3 - Component Templates.

An example system has been created which contains working examples of each of these
component templates. This system is called XAMPLE, and is described in a separate document:
UNIFACE Development Guidelines, Part 4 - Xample Application.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-6 version: 04.008.000

3.2 APPLICATION MODEL

3.2.1 Keys

Every entity must have a Primary Key. This must be constructed using the minimum number of
fields on that entity which will uniquely identify each separate occurrence.

It is strongly recommended that only fields of type “string” or “numeric” be used as keys - the use of
other data types should be avoided.

If other unique identifiers are available they may be defined as Candidate Keys.

Indexed Keys (non-unique) may be defined for performance reasons, eg: to speed up searches.

Avoid the creation of unnecessary surrogate (technical) keys just to reduce the primary key to a
single field. For example, in a one-to-many relationship where CUSTOMER is the “one” entity and
CUST_ADDRESS is the “many”, the following possibilities exist for entity CUST_ADDRESS:-

(a) ADDRESS_ID primary key, using a value obtained from a central counter or control
record

CUST_ID foreign key to CUSTOMER
ADDRESS_TEXT one or more non-key fields which hold the address data

(b) CUST_ID primary key, and foreign key to CUSTOMER
ADDRESS_NO primary key, using the next available number for this customer
ADDRESS_TEXT

Option (b) has the added advantage that the relationship does not need to be indexed separately
as the foreign key field forms the leading portion of the primary key, and can therefore make use of
the index that is automatically provided for the primary key. By numbering the addresses
sequentially within customer it is also much easier to identify the previous or next addresses in the
sequence.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-7 version: 04.008.000

3.2.2 Relationships

All relationships should be defined as CASCADE, with the exception of optional foreign keys that
should be defined as NULLIFY. This will allow the function of type DELETE 2 (as defined in Part 1
of this manual) to correctly process all subordinate records.

One-to-many relationships will not be indexed, by default. This may be reviewed for individual
relationships should performance become an issue.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-8 version: 04.008.000

3.2.3 Field Labels

All fields within the application model should have a default label defined. This should be in the
format $text(L_<fieldname>) so that the actual text can be obtained from the message file. It
therefore follows that entries must be created in the message file for all of these field labels.

When a field label on a form is associated with a particular field and no specific entry is made in
the properties for that label, the label will automatically inherit the default properties as defined
within the application model. Thus it will not be necessary to define the contents of any label field
unless it deviates from the default.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-9 version: 04.008.000

3.2.4 Field Sequencing

The fields for an entity should be laid out in the following sequence:-

a) the primary key (one or more fields)
b) the U_VERSION field (used only to aid UNIFACE performance, does not contain data)
c) any candidate key(s)
d) any foreign keys
e) other fields/attributes

If primary or candidate keys are comprised of several fields it is advisable that they be contiguous
and defined within the entity in the same sequence as the key definition. Some DBMS’s may
support non-contiguous keys or different sequences, but most do not.

Some file systems will not accept any fields in front of the primary key, or will give reduced
performance.

This layout also means that the primary key of any entity can be readily identified from the field list
itself.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-10 version: 04.008.000

3.2.5 Long String Fields

If a long string field (eg: to hold comments or notes of unlimited length) is required for an entity it
should, for performance reasons, be split from that entity and held on a separate table. This table
should therefore only contain the following fields:

a) the primary key of the main entity
b) the U_VERSION field (if being used)
c) the long string field of type C*

Although the ability to have more than one field on an entity with a field type of “C*” is
technically supported within UNIFACE, not all DBMS’s support this.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-11 version: 04.008.000

3.2.6 Default Trigger code

The placement of as much "standard" code as possible within the application model is highly
desirable. The less code that has to be inserted at the external schema (form) level the better.

However, where certain code should be used in some circumstances (eg: for all online forms) but
not in others (eg: for hidden forms) it will be necessary to strike a balance.

• If the code is not defined in the application model then it will have to be manually inserted in
those instances where it is required, with the possibility that it could be missed out.

• If the code is defined in the application model then it will have to be manually deleted in those

instances where it is not required, otherwise it may perform unnecessary processing.

• A possible alternative option would be to define the code in the application model as comment

lines only, so that they could be activated merely by removing the semi-colon prefix.

As entities and fields are created default procedure code for their triggers is automatically loaded
from the message file. The names of the Message File entries associated with each trigger can be
found in the Proc Language Reference manual section 3.2.1.

The defaults are usually obtained from the USYS library using language USA. Local variations can
be defined within your application library, but in order to reference them you must update your
assignment file as follows:-

a) Include the command $search_object dbms_first to cause UNIFACE to search the UOBJ
database table instead of the UOBJ.DOL file.

b) Set $variation to the name of the application library.

c) Set $language to “USA” (although we may use “UK” for our own development, if any other

language code is used you must be aware that if any entry with that language code is not found
then UNIFACE will default to “USA”, not “UK”).

It will also be necessary to set these values for default project library and default project language
in your developer preferences within the IDF.

When defining new default trigger code it would be better to reference global procedures rather
than define blocks of actual code. In this way it would be possible to make global changes without
having to recompile any components.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-12 version: 04.008.000

3.2.6.1 Entity Triggers

The following default trigger code is recommended for all entities:-

TRIGGER NAME CODE MESSAGE FILE NAME

<add/insert occurrence> call DISABLE ADDINSOCC

<help> call HELP_PROC GHELPDEF

<leave modified key> #include STD:LMK_TRIGGER LEAVEMODKEY

<on error> call ON_ERROR_E ONERRORENT

<remove occurrence> call DISABLE REMOVEOCC

<validate key> #include STD:VLDK_TRIGGER VLDKDEF

<validate occurrence> #include STD:VLDO_TRIGGER VLDODEF

The <add occurrence> and <remove occurrence> triggers are disabled as these operations will be
controlled by buttons on the action bar.

3.2.6.2 Field Triggers

The following default trigger code is recommended for all fields:-

TRIGGER NAME CODE MESSAGE FILE NAME

<on error> call ON_ERROR_F ONERRORFLD

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-13 version: 04.008.000

3.3 COMPONENTS

3.3.1 Component Properties

The following items will need to be modified for each form:-

Description optional Short description of the form
Title optional Whatever is defined here will be overwritten at

run-time by an entry from the message file
Library required Set to name of application library
Menu Bar optional Set as appropriate
Popup Menu optional

The correct form properties should have been set in the relevant component template (see above).
The following values should not need changing:-

Behaviour Normal Allows database updates
Limited Read-only
Code List Not used
Record Not used
Help Not used (except in HELP forms)
Menu Not used

Keep Data in Memory Off Only turned ON for performance reasons

Drop Component from
Memory

On Only turned OFF for performance reasons

Self Contained Off Only applicable for Services and Reports

Clear Area Off Only sensible in character mode
Border Off Only sensible in character mode
Panel blank Not used - all actions should be defined as

buttons within the Action Bar
Communications Default Synchronous

The Comments area should contain a block of text similar to the following:-

Function: MNU_0001 - LOGON screen

Description: This is the first screen into the system..

Author: Tony Marston

Date Written 21-06-99

Current Version: 1.0.0

Update History:

Date Updated By Details

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-14 version: 04.008.000

3.3.2 Window Properties

The form’s Window Properties should not need changing from those that were set it the component
template. They should be defined as follows:-

Window Type Defines the behaviour of the form Options are:-
Normal (default)
Primary
Secondary
Tab Page

Modality & Attachment Defines how the form is to be run Options are:-
Modal, Attached
Non-Modal, Attached
Non-Modal, Detached

Caption Enables the title bar at the top of the form ON (default)
System Menu Enables the system menu for the form ON (default)
Iconize Enables an iconize button in the form caption ON (default)
Maximise Enables a maximise button in the form caption ON (default)
Close Enables the ability to exit from the form via the

standard keystrokes or exit procedure of the GUI
ON (default)

Resizable Enables the form to be resized ON (default)

Overlay Previous Form Causes the form to appear as an unmoveable
form over the previous form

OFF (default)

Hide Previous Form Makes all other open forms disappear from view
(but not dropped) when this form is run

OFF for popups
OFF for hidden forms
OFF for help
ON for others

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-15 version: 04.008.000

3.3.3 Component Triggers

The following triggers may be populated automatically from the component template:-.

Execute This is the default entry point for the module.
Clear Empty, unless a CLEAR button is available.
Retrieve Empty, unless a RETRIEVE button is available.
Retrieve Sequential May contain local procs inherited from the component template – by

being defined in a separate trigger they will not lose their inheritance
unless the trigger is modified.

Accept Call OK_PROC
or CLOSE_PROC if no OK button is available.

Quit Call QUIT_PROC
or CLOSE_PROC if no CANCEL button is available.

Async Interrupt May contain default code to handle messages from a child instance.
Local Proc Modules May contain default code, but can be modified as necessary. Note

that if any modification is made then the ability to inherit current
values from the component template will be lost.

Operations Usually contains a default INIT operation. Other operations can be
added as required. Note that an operation will retain inheritance from
the component template unless that operation has been modified
locally, regardless of any changes to other operations.

The following triggers will usually be empty (disabled):-

<store> Database updates are only performed when the <accept> trigger is
invoked.

<erase> Records can only be deleted if there is a specific transaction or
function key for that purpose.

<print> Printing from the screen is disabled.
<user key> Not usually required
<pulldown> Not usually required
Form Gets Focus Not usually required
Form Loses Focus Not usually required

NOTE: references to a button (eg: OK, CANCEL, CLEAR, RETRIEVE) indicate that a specific
button is available within the form’s Action Bar (see below). If a trigger has not been disabled then
a corresponding button should be available in the form’s Action Bar. The user is therefore able to
fire the trigger either by pressing the relevant button, or by using the trigger’s particular sequence
of key strokes (see the section on short-cut keys in Part 1 of this document).

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-16 version: 04.008.000

3.3.4 Local Procedures

Although the component template may contain some default procs in other triggers, it is good
practice to keep all others in the <local proc module> trigger.

Note that local procedures have an “LP_” prefix to avoid confusion with global procedures, which
have no prefix, and which may be found in one of several application libraries.

As this trigger may contain many different entries the procedure name should be in uppercase, and
should be included on the end statement. There should be a separator between one procedure
and the next (eg: a line of hyphens or asterisks). The procedure should also contain some brief
comments that outline its function. This can be represented as follows:-

entry LP_INITIALISE ; local initialisation procedure

<full.<retrieve_profile>> = $text(B_FULL_PROFILE)

end LP_INITIALISE
;---
entry LP_VALIDATE ; check that all entries exist and are valid
..............
..............
..............
end LP_VALIDATE

In cases where a proc name contains several words which try to identify its meaning, and these
words have to be strung together without a separator due to size limitations, it may make it more
readable to use uppercase for the first letter of each word, as in lpFindFirstEntry.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-17 version: 04.008.000

3.3.5 Local Constants

Local constants have two parts, a NAME and an EXPRESSION. The constant can be referenced
anywhere in proc code by using NAME surrounded by “<” and “>”, as in “<name>”. When the
component is compiled all instances of <name> in the resulting object code will be replaced by the
value of the expression associated with that name. This will only be visible in the proc listing.

This facility is used in local procs that are inherited from component templates. Where a proc
requires a name or value, if this value is hard-coded within the proc then that proc cannot be
altered without cutting off all inheritance from the component template. However, if the proc
contains references to local constants then the value of EXPRESSION can be altered within the
local constants screen without changing any code within the proc, and without losing any
inheritance.

For example, the INIT operation in most forms contains the following:

operation INIT

$form_version$ = "<form_version>"
….

end INIT
;===

When the component is compiled the reference to <form_version> will be replaced with the
current expression for the constant with that name.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-18 version: 04.008.000

3.3.6 Button Bars

Each form may contain sets of pushbuttons that are arranged as follows:-

⇒ An Action Bar running horizontally across the bottom of the form.

⇒ A Navigation Bar running vertically down the right-hand side of the form.

⇒ A Column Bar running horizontally across a multi-row display.

For convenience all of these button bars should be defined in the application model as dummy (ie:
non-database) entities. The most commonly used buttons should then be defined as dummy fields
within these dummy entities.

The name of the button should equate directly with the function performed by that button. This then
makes it possible to search through the IDF source in order to identify all those forms that perform
that function (ie: contain that button).

The properties of the buttons should be set as follows:-

dimensions width=11, depth=2
data type string
widget type fCommandButton

template shorthand
interface definition PUSHBUTTON C22
syntax definition PUSHBUTTON NED
layout definition PUSHBUTTON CTR,NAV (see note)

characteristics BOILERPLATE or CONTROL (see note)

1. NAV will prevent the button from changing colour to the value specified in
$active_field whenever the field has focus.

2. BOILERPLATE will activate the <leave field> trigger of the current field, and any
associated entity triggers, if necessary. CONTROL will not activate these triggers and
should therefore be reserved for the CANCEL, CLOSE, DELETE and CLEAR buttons.

Each button will contain a label in the form of a text string that will be retrieved from the message
file. The label cannot be loaded using the INITIAL VALUE option within field properties, therefore
must be the subject of a specific assignment in proc code.

The button’s <detail> trigger must contain the code to be executed when the button is activated.

All buttons on the ACTION and NAVIGATION bars should be included in the form’s prompt
sequence - ie: it should be possible for the user to gain access to any button by means of the TAB
or BACKTAB key.

As the cursor is positioned on each button a hint message should be displayed in the message line
in order to give the user more information as to the purpose of the button. The hint text should be
taken from the message file using an identity constructed from the button name prefixed by “H_”.
The code to display this text should be inserted into the button’s <field gets focus> trigger, as in
the following example:-

message/hint $text("H_%%$fieldname")

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-19 version: 04.008.000

3.3.6.1 Action Bar

A button on the Action Bar will perform specific processing on the data within the current form.

The name of the button should equate directly with the function to be performed by that button (eg:
OK, CANCEL, CLEAR, and RETRIEVE).

The button label should be loaded from the message file. The identity of the message file entry
should be the button name prefixed with “B_”. The code to load the button labels would therefore
be similar to the following:-

ok.action_bar = $text(B_ok)
cancel.action_bar = $text(B_cancel)

NOTE: The loading of labels for entity ACTION_BAR is automatically performed by global proc
ACT_BUTTONS, which is invoked by the INIT operation.

Where an action button equates directly with a form-level trigger it must be possible for the user to
perform that action either by pressing the button or by using the trigger’s particular short-cut key
(as mentioned in Part 1 of this document). To ensure that both methods perform exactly the same
processing it is advised that the necessary code be placed in the form-level trigger, and for the
button to pass control to the trigger by using the macro “^TRIGGER” statement.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-20 version: 04.008.000

3.3.6.2 Navigation Bar

A button on the Navigation Bar will invoke another (child) form in order to perform additional
processing, usually associated with the object that is being displayed on the current form.

The name of the button should equate directly with the name of the form that is run when that
button is pressed. (eg: MNU_0030L, MNU_0030C, etc).

The button label should be loaded from the message file. The identity of the message file entry
should be the button name prefixed with “B_”. The code to load the button labels would therefore
be similar to the following:-

MNU_0030L.navigation_bar = $text(B_MNU_0030L)
MNU_0030C.navigation_bar = $text(B_MNU_0030C)

NOTE: The loading of labels for entity NAVIGATION_BAR is automatically performed by global
proc NAV_BUTTONS, which is invoked by the INIT operation.

An example of the proc code that is required to activate a child component is detailed in section
4.7.8 Invoking a UNIFACE component. This code may have to be modified under the following
circumstances:

⇒ If a non-empty occurrence on the current screen has to be selected before the child form can
operate then code similar to the following will be required:

If ($empty(<entity>)
Message $text(M_90009) ; nothing retrieved yet
Return(-1)

endif

⇒ If any changes to database values have been made on the current form these changes must
be stored on the database before control is passed to the child form so that it has access to the
current values, not the previous values.

If the current form is of type LIST and has the potential for dealing with stepped hitlists then please
refer to section 4.18 Hitlist Processing for more details.

If the child form modifies the database, and these modifications need to be communicated back to
the parent so that they may be incorporated into the parent’s display, then please refer to section
4.8.2.2 Receiving a message for more details.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-21 version: 04.008.000

3.3.6.3 Column Bar

The Column Bar is designed to be used in those forms which contain multiple occurrences
arranged in rows, with a label above each column. A column button replaces an ordinary label as it
allows processing to be performed should the user click on it with the mouse.

When a column button is pressed it will cause the hitlist of retrieved occurrences to be sorted
according to the value contained in that column. It will compare the value from the first and last
occurrences in order to determine if the current sequence is ascending or descending, then sort
the hitlist in the other sequence.

Each button on the Column Bar should have exactly the same name as the field whose data is
being displayed in the corresponding column. Once a button has been created its properties
should be set by applying the field template COLUMN_BUTTON. This contains all the default
definitions, including code in the <detail> trigger to perform the sort.

The INIT operation for the form will contain a call to the global proc COL_BUTTONS which will load
a label into each button. This will be retrieved from the message file using an identity constructed
from the button name plus a prefix of “L_”. This should retrieve the same text as the label for the
field of the same name.

There are two ways to override this action: -
a) Define an alternative button label in the ‘Initial value’ part of the button’s properties. This will

NOT be overwritten by the COL_BUTTONS procedure.
b) Place code in the local proc LP_INITIALISE to replace the value inserted by COL_BUTTONS.

This should be similar to the following:-

person_name.column_bar = $text(L_PERSON_NAME)

The <detail> trigger should contain the following code from the field template: -

call LP_COLUMN_BUTTON($fieldname)

The local proc LP_COLUMN_BUTTON will be inherited from the component template, and will
contain the code which will perform the sort.

If any field is not actually on the entity being sorted, the button’s <detail> trigger should be changed
to something similar to the following: -

call LP_COLUMN_BUTTON(“%%$fieldname.ENTITY”)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 3-22 version: 04.008.000

3.3.7 Widget Types

When painting objects on forms the following Widget Types should be used:-

fEditBox For all editable non-numeric fields - supports proportional fonts, does not
support the WIDTH layout model. Multi-line fields containing carriage-returns
will not be supported unless the MULTILINE and WORDWRAP options are
set ON, or the data type is set to Special String.

fNoEditBox For all non-editable fields - similar to EditBox, but has different visual
presentation

fEditNumber For all editable numeric fields
fNoEditNumber For all non-editable numeric fields
Unifield Does not support proportional fonts, supports the WIDTH layout model,

MULTILINE and WORDWRAP are ON by default
fListBox For list boxes
fDropDownList For dropdown lists
fDropNoEdit For dropdown lists which are display only
fComboBox For Combo boxes (dropdown lists with the option of user input)
Dynalabel For dynamic labels
fCheckBox For checkboxes (fields of type BOOLEAN)
fCommandButton For pushbuttons or command buttons
fColumnbutton For column labels on the Column Bar
fMenuButton Used by the menu system for the menu options
fRadioGroup For radio buttons
fSpinButton For spin buttons on numeric fields
Label For all screen labels (no text to be hard-coded)

Please refer to Appendix A for the default settings for these widgets.

The “f” prefix on widget names signifies a custom version that should be used in preference to the
standard version provided by UNIFACE. This means that the widget properties used within an
application are kept separate from any default definitions that are provided by UNIFACE, which
could possibly be changed with a future release of the product.

The custom widgets can be made to replace the standard widgets in the form painter’s tool palette
by means of the following entries in the .INI file:

[gfp]
widgets=fcheckbox,fradiogroup,fcommandbutton,fdropdownlist,fspinbutton

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-1 version: 04.008.000

4. CODING STANDARDS

Coding standards help to ensure the maintainability of the code through its clarity, and allow for
easy integration of different information systems. A standard approach shortens the development
process: developers know immediately what to do, and many issues have standard solutions.

4.1 PROC LAYOUT STANDARDS

4.1.1 Structure of Proc Modules

Do not make proc modules too large, instead create a series of small, single-purpose modules.
Give each module a meaningful name, preferably something which describes its purpose.

Example:

if (option = 1)
call LP_CALCULATE_1

elseif (option = 2)
call LP_CALCULATE_2

else
message $text(M_9001)
return(-1)

endif
……
;===
entry LP_CALCULATE_1

…. ; lots of code
end LP_CALCULATE_1
;===
entry LP_CALCULATE_2

…. ; lots of code
end LP_CALCULATE_2
;===

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-2 version: 04.008.000

4.1.2 Uppercase, lowercase, mixed case, appropriate case

As a general rule all proc coding should be entered in lower case. THE USE OF UPPER CASE IS
CONSIDERED TO BE SHOUTING, and should only be used when something needs to be brought
to the reader’s attention. Other people may have different opinions, but when I’m looking through
code I like to see the following highlighted with the use of uppercase:
♦ Where a module starts.
♦ Where a module finishes.
♦ Where a module branches to another module (eg: with call, run, or activate).

Use the appropriate case for object types whose interpretation depends on the correct use of
mixed upper and lower case, such as:
♦ File names
♦ Operating system commands
♦ Specific or required string values

In cases where a proc name contains several words which try to identify its meaning, and these
words have to be strung together without a separator due to size limitations, it may make it more
readable to use uppercase for the first letter of each word, as in lpFindFirstEntry.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-3 version: 04.008.000

4.1.3 Entries

When coding a local proc module (entry) follow these simple guidelines:
♦ Put the module name in upper case so that it stands out.
♦ Include a brief description of the module after its name.
♦ Include the module name on the end clause.
♦ Put a blank line after the entry and before the end.
♦ Terminate each module with a distinctive separator, such as a line of “=”.

Example:

entry LP_CALC_TOTAL ; calculate total amount
……….
……….
……….

end LP_CALC_TOTAL
;===
entry LP_SOMETHING_ELSE ; do something else
……….
……….

end LP_SOMETHING_ELSE
;===

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-4 version: 04.008.000

4.1.4 Operations

These can be treated the same way as local proc modules:

operation CALC_TOTAL ; calculate total amount
params

string pi_input_string : IN
string po_output_string : OUT

endparams
……….
……….

end CALC_TOTAL
;===

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-5 version: 04.008.000

4.1.5 Parameters

Where proc modules or operations require parameters to be passed these are specified in the
params…endparams block which must appear immediately after the module/operation name and
before the variables…endvariables block or the first line of code.

Use one of the following prefixes on parameters so that they can be distinguished from local
variables and entity items:

pi_ on IN parameters
po_ on OUT parameters
pio_ on INOUT parameters

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-6 version: 04.008.000

4.1.6 Indenting and Spacing

In nested structures identify each separate level by indenting one tab stop more than the previous
level. A single tab is easier to use than a multiple of spaces, and the width of each tab can be
adjusted by using the UNIFACE ruler. Separate one logical block of code from another with a blank
line.

if (lv_Componentname = $applname) ; being run from start-up shell
$status = 0 ; do nothing

else
call CREATE_INSTANCE() ; check instance name
if ($status)

if ($procerror) call PROC_ERROR($procerrorcontext)
return($status)

endif
endif

if (lv_Params = "") ; optional
activate lv_Instance.lv_Operation() ; without $$PARAMS
if ($procerror = <UPROCERR_NPARAMETERS>) ; param mismatch

activate lv_Instance.lv_Operation(lv_Params) ; try with
endif

else
activate lv_Instance.lv_Operation(lv_Params) ; with $$PARAMS
if ($procerror = <UPROCERR_NPARAMETERS>) ; param mismatch

activate lv_Instance.lv_Operation() ; try without
endif

endif
if ($procerror) ; could not activate

call PROC_ERROR($procerrorcontext)
return(-1)

endif

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-7 version: 04.008.000

4.1.7 Alignment

Where a group of proc statements are performing similar functions (eg: assigning values) it makes
the code more readable if corresponding arguments are aligned, as in:-

f1.entityA = “one”
field2.entityA = “two”
field_three.entityA = “three”

This looks more elegant than:-

f1.entityA = “one”
field2.entityA = “two”
field_three.entityA = “three”

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-8 version: 04.008.000

4.1.8 Line Continuation

Divide proc statements that are larger than 72 characters into multiple lines using the line
continuation marker %\ and indent the next line.

$$sql_where_clause = “where name = %%$name$%%% %\
 and Date_of_Enrollment < %%$check_date$%%%”

4.1.9 Substitution Delimiter

Always end a substitution with %%% where confusion is obvious, such as in the following example:

use “The target field is %%TARGET_FIELD%%%.%%$entname$%%%”
rather than “The target field is %%TARGET_FIELD.%%$entname$”

4.1.10 Comments

Some people assume that comments are superfluous as you can surely tell what a module does
just by looking at the code! WRONG! Comments are an invaluable aid when the time comes to
debug or enhance a module – they explain why a particular line of code exists in a particular place,
thus making the maintenance task a lot easier.

Keep proc code short and self-explanatory, thus minimising the need for comments. Avoid having
pages of comments, but put short comments where needed, either above or next to the proc, and
try to align the comments.

; initialisation before check
…..
activate “ABC002H” ; check business rule BR001
if ($status = 100) ; BR001 not violated, so continue

….. ; reset what needs to be reset
return(0)

else ; BR001 violated!
….. ; do what needs to be done
return(-1) ; stop this processing

endif

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-9 version: 04.008.000

4.2 STANDARDS FOR USING FIELDS AND VARIABLES

4.2.1 Field Qualification

Always qualify fields (field.entity) in proc coding, except in the following circumstances:-
♦ When qualifying the field is not allowed according to the syntax of the proc statement.
♦ In the order by clause of a read proc instruction.
♦ The select phrase of the selectdb proc instruction.
♦ The field list of the compare proc instruction.
♦ When defining proc coding in the application model in a field-level trigger with references to

that same field or another field in the same entity. This will ensure that the coding will also be
valid when used in subtype entities.

♦ When used in global procs where referring to fields of different entities.

Field qualification is necessary under the following circumstances:
♦ When in one component several fields in different entities share the same name.
♦ When a field is referenced in a proc module that contains parameters or local variables with the

same name. Unless the field name is fully qualified the value of the parameter or local variable
will be used instead of the field value.

4.2.2 General variables ($1 - $99)

These are a relic of early versions of UNIFACE, and should now be avoided wherever possible as
their usage and content is not clearly evident from their identities. The current alternatives are:-
♦ Global variables ($$name)
♦ Component variables ($name$)
♦ Local variables
♦ Parameters (when passing values between objects)

4.2.3 Global variables ($$name)

Their use should be kept to a minimum as:-
♦ Global variables cannot be used in self-contained components.
♦ Global variables cannot be used in a partitioned environment to pass values between

components on clients and/or different servers.
♦ The behaviour of modal and non-modal components could cause unexpected results.

When passing values from one component to another it would be better to use the argument list on
the activate statement.

4.2.4 Component variables ($name$)

Use instead of local variables where a value needs to be referenced by different triggers or procs
in the same component.

4.2.5 Local variables

Use these in preference to component, global or general variables.

Use an ‘lv_’ prefix on local variable names so that they can be distinguished from parameter
names and entity items.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-10 version: 04.008.000

4.3 STANDARDS FOR USING MESSAGE FILE ENTRIES

4.3.1 Message text

When a message needs to be displayed to the user it is better to obtain it from the message file
rather than hard code it inside the proc. This improves flexibility and helps to provide language
independent text and labels.

The message line can only contain a single line of text, and will always contain the message that

was last issued. The history of past messages can be examined by pressing the button at the
end of the message line.

Messages of more-than-average importance can be brought to the user’s attention by attaching
one of the /error/warning/info switches to the message command. This will cause the message
to be displayed in a special dialog box rather than in the usual message line. This dialog box will

not be cleared until the button (the only available button) is pressed. The message
will be logged in the message history.

4.3.2 Hint text

If the <field gets focus> trigger for a field contains a message/hint instruction this will cause a
message to be displayed to the user as soon as that field is given focus. The /hint switch causes
the message to be excluded from the message log.

This feature is especially useful on command buttons as it gives the user more information than is
usually contained within the button text. Note that the PUSHBUTTON field template contains the
following default code in the <field gets focus> trigger :

message/hint $text("H_%%$fieldname")

4.3.3 Help text

Although it is possible to define help text in the message file, and to give the user the ability to
display this help text within the online session, this suffers from the disadvantage that the help text
cannot be modified without re-creating the .DOL file. In these standards I find it much easier to
keep all help text in the application database. With the aid of a simple maintenance screen the user
is therefore able to customise all help text with the greatest of ease. This is fully documented in a
later section.

4.3.4 Field Labels

All fields should have their labels defined in the message file using the id of “L_” followed by the
field name. The value “$text(L_<fieldname>)” can then defined in the application model, thus
making this the default label for any field which appears in a form component.

Note that message file id’s cannot be larger than 16 characters. To allow for the “L_” prefix this
means that field names should be unique within the first 14 characters.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-11 version: 04.008.000

4.3.5 Button Labels

Buttons should have their labels defined in the message file with an id of “B_” followed by the
button (field) name. This will allow button labels to be loaded with the standard statement :

fieldname.button_bar = $text(“B_%%fieldname”)

4.3.6 Questions

For questions which offer a variety of responses the askmess command should be used, as in the
following example:-

$1 = $text(B_ABANDON)
$2 = $text(B_RETRY)
askmess/question $text(Q_00031),"%%$1,%%$2" ; abandon or retry ?
if ($status = 1) ; abandon

.............
else ; retry

.............
endif

Note that the text for the replies as well as the question is obtained from the message file.

Messages processed by the askmess command are not logged in the message history.

The switch on the message and askmess command will determine which of the following symbols
is displayed in the dialog box to the left of the text:-

/info /warning /error /question

It is possible to obtain all the replies from a single entry in the message file, thus replacing
“%%$1,%%$2” with $text(R_00031). However, this makes the number of replies and their
associated $status values not immediately evident when examining the proc code. It would be
possible to alter the number of replies and their sequence within the message file entry without
making the corresponding change in the proc code, which could cause confusion.

4.3.7 Form Messages

There may be occasions when it is required to have a message appear inside the body of a form. If
the text is fixed (eg: inside a form of type FRONTEND) then the message id can be constructed as
“M_<formname>”. If the message is variable depending on circumstances that are determined at
run time, then a message id of the format “M_nnnnn” may be used.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-12 version: 04.008.000

4.4 USE OF LIBRARIES AND GLOBAL OBJECTS

4.4.1 General

The use of different libraries for enterprise-wide and application-specific global objects can be very
confusing, therefore the following simple rules should be applied:-

a) Use SYSTEM_LIBRARY (NOT USYS) for enterprise-wide global Procs and Variables.
b) Use USYS for enterprise-wide global objects other than global Procs and Variables.
c) Use a specific Proc library (eg: named after the application) for all application-specific global

procs and variables. Define this library name in each component’s properties.
d) Use a specific globals library (eg: named after the application) for other application-specific

global objects. This library name should be assigned to $variation by proc code within each
component, and should also be defined in the library field for the component’s definition within
the Menu database.

Generally speaking items c) and d) above can be covered by a single application library.

Note that global objects cannot be used in self-contained components. This is because services
and reports could be deployed on different servers and therefore may not be guaranteed access to
the same set of global objects in the .dol file as used on the client machine.

4.4.2 Using Include Procs with Self-Contained Components

Self-contained components cannot reference global procs, therefore all proc references must be
satisfied by local procs. However, instead of having the entire contents of each proc defined locally
within the component it is possible to use the #INCLUDE statement to copy the contents from a
central library at compile time. The command syntax is as follows:

#include <library name>:<proc name>

Note the following:
• <proc name> must be defined as an entry in the INCLUDE PROCS area of <library name>.
• The contents of <proc name> are included in the component at compile time and referenced

locally at run time.
• If any include proc is modified all relevant components must be re-compiled before the

modifications can be referenced at run time.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-13 version: 04.008.000

4.5 PROC CONSTRUCT STANDARDS

4.5.1 If-Else-Endif constructs

When using conditional statements each part should be on a separate line and indented, eg:

if ($status = 0)
call OK_PROC

else
call ERROR_PROC

endif

Multi-level IF statements are allowed, but should be avoided if they become too complex.
Statements that are at the same level should be indented by the same amount to make them more
readable, eg:

if ($status = 0)
if (<condition1>)

call PROCESS1
else

call PROCESS2
endif

else
call ERROR_PROC

endif

Single-line IF statements should be avoided, unless they are very simple, eg:

if (!$fieldendmod) done

if ($status) return(-1)

A sequence of IF statements can be specified using ELSEIF instead of an IF at the next level, eg:

if (<condition1>)
<statement1>

elseif (<condition2>)
<statement2>

…
elseif (<condition99>)

<statement99>
else

<nothing qualifies>
endif

Note that this can be better achieved using the selectcase command.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-14 version: 04.008.000

4.5.2 Selectcase-Endselectcase constructs

This is the most efficient way of defining and executing code where only one condition out of a
series of conditions can qualify, eg:

selectcase $1
case “”

message “$1 is empty”
case “ABC”

message “$1 is ABC”
…
case “xyz”

message “$1 is xyz”
elsecase

message “$1 has an unexpected value”
endselectcase

Note the use of the final ELSECASE which traps any condition which has not been specifically
identified. It is strongly recommended that this feature be used because if there is an unexpected
value it can be trapped here rather than allowing it to flow through the system where it may cause
untold damage.

4.5.3 While-Endwhile constructs

Assign variables to control the while/endwhile loop immediately before the start of the proc
instruction, and do not use one-liners.

$continue$ = “T”
while ($continue$)

call XP_NEXT_ACTION
endwhile

It is possible to use the break instruction to terminate the loop without using an additional variable:

setocc “entity”,1
while ($dbocc(entity))

call PROCESS_OCC ; process this occurrence
setocc “entity”,$curocc(entity)+1 ; step to next occurrence
if ($status < 1) break ; none left – stop

endwhile

4.5.4 Repeat-Until constructs

Assign variables to control the repeat/until loop immediately before the start of the proc
instruction, and do not use one-liners.

$count$ = 0
repeat

……………..
$count$ = $count$ + 1

until ($count$ = 100)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-15 version: 04.008.000

4.5.5 Boolean

Never test a boolean field by testing for the exact value since the true value of a boolean field may
be “T”, “Y” or 1 depending on the platform and the DBMS in use.

PREFERRED TO BE AVOIDED
if ($fieldmod (field.entity))

…
endif

if ($fieldmod (field.entity) = “T”)
…

endif

$still_to_do$ = “T”
if ($still_to_do$)

…
endif

$still_to_do$ = “T”
if ($still_to_do$ = “T”)

…
endif

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-16 version: 04.008.000

4.6 STANDARDS FOR USING TRIGGERS

Most triggers at all levels should be used as intended for normal UNIFACE functionality. This
section gives standards for certain triggers in order to obtain special results or to avoid conflicts.

4.6.1 Component Template inheritance

In order to maintain maximum inheritance functionality from component templates use what would
otherwise be an empty trigger for template-specific procs. These triggers should never be changed
in those components that are derived from it, otherwise all inheritance capabilities with the
component template will be lost. Examples of such triggers are: <retrieve sequential> in form
components, or the <quit> trigger in services. The <local proc modules> trigger should only be
used for component-specific procs, and not template-specific procs.

Operations must be located in the <operations> trigger. To maintain maximum inheritance
functionality, consider calls to local proc modules, as in the following example:

operation PROCESS
params

…..
endparams
; code inherited from component template
….
….
call LP_PROCESS

end PROCESS

4.6.2 Trigger layout

Triggers that are inherited, either from the application model or from component templates, should
be prefixed with a block of comments indicating whether the contents can or cannot be modified. If
any modifications are made within a component then this comment block should be modified to
indicate that fact.

; Inherited Code
; All the code in this trigger is inherited – DO NOT CHANGE

4.6.3 Local Proc Modules trigger

Although it is possible to define local procedures in any trigger, it is advisable to centralise them so
that they can be found easily.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-17 version: 04.008.000

4.7 STANDARDS FOR INVOKING OTHER OBJECTS

4.7.1 Setting $status

Do not use $status in an assignment to set the return value; use only the return or exit proc
instruction.

Example:

use: return(3)

rather than: $status = 3
done

4.7.2 Argument with Return and Exit

Always use an argument with a return or exit proc instruction. Use explicit values or constants as
the argument as much as possible. Only return $status when you can be sure that the return value
will be checked in the calling object.

Example:

Use: return(0)

rather than: return

use: return(-1)
exit(<OK>)

rather than: return($status)
exit($status)

4.7.3 Checking return values of Proc instructions

• Check the most likely condition first.
• Check the return status of every component-level I/O proc instruction.
• When inserting proc coding in the <read> trigger after a read instruction, first check for a

negative return value. If the read instruction returns a negative value then any remaining
processing in that trigger should be abandoned.

Example:

read
if ($status < 0) done
$total_amt$ = $total_amt$ + amount

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-18 version: 04.008.000

4.7.4 Standard return values for $status

Every UNIFACE object (component, operation, global or local proc module) or 3GL routine that is
invoked should set the return value ($status) according to a predefined standard, eg:

$status Result Description

0 Success Output parameters are set as expected, and processing can
continue.

>0 Success with condition A special condition applies (warning or info situation). The
return value ($status) determines what can be expected as
output parameters; processing can continue.

<0 Failure Indicates failure (error situation). The return value ($status)
determines what the problem is; output parameters are not set
up properly and processing cannot continue in the normal way.
There may also be a non-zero value in $procerror.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-19 version: 04.008.000

4.7.5 The use of $PROCERROR

A new function was introduced with version 7.2.01 of UNIFACE to help differentiate between an
error being detected inside an object by proc code, and a failure by UNIFACE to activate the
object. This function ($PROCERROR) is set to zero only when the object (proc module or function)
has been successfully activated, and is only set to non-zero if the activation or call fails.

This means that immediately after any proc statement which attempts to activate another object
the contents of $procerror should be examined before the contents of $status. If $procerror has
been set to a non-zero value a description of the error will be contained in an additional function
called $procerrorcontext. This is a string field (an associative list) whose contents can be
appended to the message frame by means of a global proc called PROC_ERROR.

Example:

Instruction argumentlist
if ($procerror)

call PROC_ERROR($procerrorcontext)
return(-1)

endif
if ($status)

………
endif

The result of call PROC_ERROR($procerrorcontext) would be something similar to the following
being added to the message frame:-

ERROR=-1122
MNEM=<UPROCERR_NARGUMENTS>
COMPONENT=X_LIST1
PROCNAME=LP_RETRIEVE
TRIGGER=RETR
LINE=11
DESCRIPTION=Wrong number of arguments

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-20 version: 04.008.000

4.7.6 Testing for fatal errors

When using a CALL or ACTIVATE statement it is good practice to test for a fatal error before
continuing. A fatal error is categorised as one which results in control not being passed to the
specified object (module or component), thus the return value is set by UNIFACE itself rather than
the object. This can be caused by such circumstances as:
• object not found
• mismatch in the number of parameters
• a fatal error was detected in the called object itself

This can be handled with the following code.

if ($procerror) ; check for fatal error
 call PROC_ERROR($procerrorcontext)
 $status = <FATAL_ERROR>
endif
if ($status = <FATAL_ERROR>) ; check for fatal error
 call GET_MESSAGE ; display error messages
 return(<FATAL_ERROR>)
endif

Note that this standard block of code can inserted by using the following:

#include STD:FATAL_ERROR

It is good practice to use the #include proc as any future changes to the code can be automatically
inherited by the components the next time they are compiled.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-21 version: 04.008.000

4.7.7 Error Handling with Self-Contained Services

The standard method for dealing with errors (validation or otherwise) in forms is as follows:

if (<condition>)
message $text(<MessageId>)
return(-1)

endif

This obtains the text for the specified message from the message file (substituting any values as
necessary) before displaying it in the message line, and terminates the current procedure.

This method cannot be continued in self-contained services as access to the message file (part of
the DOL file) is denied. The message id must therefore be passed back to current form as this
does have access to the DOL file and can therefore obtain the message text. Any values which
must be inserted in the body of the message must also be passed back so that they are available
when the message command is invoked. The procedure for dealing with messages in services is
now performed in two distinct stages:

4.7.7.1 Recording a Message

All messages will be written to a special component known as the Message Object. This will hold
all messages until instructed to pass them back to the current form. Messages can be written to the
Message Object by means of the following:

call SET_ERROR (“MessageId”)
return(-1)

There are variations of this proc called SET_FATAL, SET_INFO and SET_WARNING for different
categories of message. Normal validation failures should be treated as ERRORS while the FATAL
status is reserved for catastrophic conditions (eg: store errors). INFO and WARNING should be
self-explanatory.

Values for insertion/substitution in the body of the message must be included with the message id
but separated with the ‘<GOLD>semi-colon’ delimiter, as follows:

Call SET_ERROR(“M_90024;1=param1;2=param2;$prompt=<fieldname>)

The insertion points should be indicated in the body of the message using %%$1, %%$2 etc, up to
%%$5. If $prompt is specified the cursor will be positioned on that field when the message is
eventually displayed.

4.7.7.2 Displaying a Message

The procedure which activates a service must now follow this with a call to the GET_MESSAGE
proc which will obtain any outstanding messages from the Message Object, delete them and
display them. The count of messages of type “F” (Fatal) and “E” (Error) will be returned in $status
and can therefore be used to detect that an error message was generated in earlier processing.

call GET_MESSAGE
if ($status) return(-1)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-22 version: 04.008.000

4.7.8 Invoking a UNIFACE component

4.7.8.1 A Form component

While within an existing form the user may elect to run another form by selecting a command
button or menu option, usually to display or process additional details on the current object. This
form will have user dialog (due to an edit or display statement in the <exec> trigger), and will
usually require the identity (i.e.: primary key) of the current object to be passed as a parameter so
that it can automatically retrieve that object.

A global proc called ACTIVATE_PROC (defined within SYSTEM_LIBRARY) has been created just
for this purpose. It uses the following global variables:-

$$component The name of the form component (default value is $fieldname).
$$instance The name to be given to this instance, either the same as $$component

(for a single instance) or a generated name (for multiple instances).
Refer to section 5.7.6.4 Choosing an Instance Name for details

$$properties To override the default settings within the component.
$$operation Operation name within the component to be activated (the default is “EXEC”

as only the <exec> trigger can contain an edit or display statement).
$$params A single parameter string to be passed to the component (this is an

associative list, therefore may contain any number of items).

Example: (<detail> trigger of a navigation button)

if ($empty(<MAIN>)
message $text(M_90009) ; nothing retrieved yet
return(-1)

endif

$$component = componentname ; default is $fieldname
$$instance = instancename ; default is empty
$$properties = propertylist ; default is empty
$$operation = operationname ; default is empty
call LP_PRIMARY_KEY ; load values into $$params
call ACTIVATE_PROC ; activate component instance

Local proc module LP_PRIMARY_KEY is used to load the primary key of the current occurrence
into global variable $$params, and contains code similar to the following:-

entry LP_PRIMARY_KEY ; load parameter to pass to child process

$$params = $keyfields(<MANY>,1) ; load names of pkey items
setocc “<MANY>”,$curocc(<MANY>) ; make occurrence current
putlistitems/id $$params ; insert representations

end LP_PRIMARY_KEY

Note that in this example the operation being activated is the <exec> trigger, and the passing of
parameters is one way. It is possible for this trigger to be activated many times with a different
parameter string. This will cause the component structure of the child form to be cleared of its
current contents before the new parameter string is processed.

It is possible to activate operations other than the <exec> trigger in a form component, and to have
values passed back, but this will require proc coding similar to that which is described in the
following section.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-23 version: 04.008.000

4.7.8.2 A Service component

The normal processing of a form may require the activation of an operation in a service component
in order to perform a common function. A service does not have any dialog with the user (no edit
or display statement is allowed) therefore an operation name other than “EXEC” may be used. As
the operation may require more parameters than the single $$params string, the global proc
NEW_INST_PROC should be used with the activate statement. This requires the following global
variables:

$$component The name of the form component.
$$instance the name to be given to this instance, either the same as $$component (for

a single instance) or a generated name (for multiple instances).
$$properties To override the default settings within the component.

Example:

if ($formmodality(<instance>) < 0) ; if instance not alive then instantiate it
$$component = componentname
$$instance = instancename
$$properties = propertylist
call NEW_INST_PROC
#include STD:FATAL_ERROR

endif

activate $$instance.operation(parameterlist…..)
#include STD:FATAL_ERROR
……
delete_instance $$instance

Note: For simple operations the call to NEW_INST_PROC may be omitted as the activate
command performs an implicit new_instance if the component has not already been instantiated.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-24 version: 04.008.000

4.7.8.3 A Report component

No details yet.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-25 version: 04.008.000

4.7.8.4 Choosing an Instance Name

Instead of activating a component we create and activate an instance (copy) of that component.
This allows more than one instance of the same component to be active at any one time. This is
governed by the name that is chosen for each instance before it is created. If the instance name is
set to the component name then only one copy of that component can exist. If multiple copies are
required then different instance names need to be generated at run time.

Multiple instances are typical when creating child instances from a LIST form. The user selects the
1st occurrence and creates the 1st child instance, then selects a 2nd occurrence and creates a 2nd

instance of the same child form. It is possible to get the system to generate a random and unique
instance name, but this would allow multiple instances of the same child form being created for the
same occurrence at the same time. It would therefore be advisable to construct each instance
name using a value that links it with a particular occurrence. It would not be a good idea to use the
occurrence number within the current hitlist as renumbering will occur if records are added or
deleted. A value that is both unchangeable and unique for every database occurrence is the
primary key, so it would seem logical to use this in the construction of the instance name. If the
primary key value were to be used on its own this would prevent instances of different components
with the same value from being active at the same time. A way to avoid this would be to use a
combination of the component name and the primary key value.

A method has been designed into the menu system which allows the system administrator to
choose whether to allow multiple instances of a component by defining the pattern to be used
when constructing the instance name for that component. This is defined in the instance_name
field for the component’s entry in the MNU_TRAN table. A blank value (the default) signifies that
the instance name should be the same as the component name. A non-blank value signifies the
pattern to be used when constructing the instance name. The pattern should consist of the
following:
♦ Any combination of letters, numbers or underscore characters.
♦ Field names enclosed in parentheses ‘(‘ and ‘)’. The field name must exist within the set of key

values which is passed down from the parent form to the child.

UNIFACE insists that the instance name begins with a letter, and as some primary key values may
be purely numeric it is advisable to specify an alpha prefix in the pattern. The instance name
cannot exceed 16 characters, therefore rather than using the full component name as the prefix it
would be advisable to use a shortened version. This name has three parts - <system prefix>,
<sequence number>, and <dialog type>, therefore a unique prefix can be constructed from <dialog
type> and <sequence number>.

For example, the menu system contains a transaction (component) called MNU_0020R which
accesses a database entity whose primary key is USER_ID. The pattern for generating different
instance names for each occurrence would therefore be “R20_(USER_ID)”. At run time the pattern
characters “(USER_ID)” will be replaced by the actual value from the database occurrence, so if
the value was “FRED27” the generated name would be “R20_FRED27”.

It is possible to specify more than one field name in the pattern. This is useful if the primary key is
composed of more than one field.

Do not worry if the resulting instance name contains invalid characters or is more than 16
characters long – the standard software will strip out and truncate as necessary.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-26 version: 04.008.000

4.7.9 Invoking a 3GL routine

When invoking a 3GL routine perform the following:
• Initialise input and output parameters (subset of general-purpose variables $1-$99).
• Perform the 3GL routine, including resetting the input parameters.
• Check for any execution failure in $procerror – if this is non-zero then $procerrorcontext will

contain full details of the error.
• Check for any non-zero value in $status (which can be set from within the 3GL routine).
• Use the output parameters.

Example: (using DDE to interface to an Excel spreadsheet)

$50 = “EXCEL” ; Excel service
$51 = “democar.xls” ; .xls file containing spreadsheet
$52 = “” ; not used here
$53 = “r10c8” ; Cell: row 10, column 8
perform “uDdeRequest” ; give me the data in that cell
if ($procerror) ; if (-1) then 3GL routine not found

call PROC_ERROR($procerrorcontext)
return(-1) ; return corresponding value

else ; return value is zero
total_amount.order = $53 ; contents of that cell

endif

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-27 version: 04.008.000

4.8 COMMUNICATION BETWEEN OBJECTS

The activation of a modal form and the processing of return values can be done within the same
context or proc. The same is true for activating a synchronous service. However, non-modal forms
do not normally return values upon termination. Any values must be communicated by other
means, as identified in the following paragraphs.

4.8.1 Via the ACTIVATE command

The ACTIVATE command will create the instance if it does not already exist. The instance must
contain an operation name with a matching signature in order to receive any passed parameters.

4.8.1.1 Sending Parameters (to an ACTIVATEd module)

A component instance can pass parameters to another component instance by means of the
following command:

activate instance.operation(parameterlist…..)

In order for this to be successful the receiving instance must have an operation defined with that
name, and this operation must have a params …. endparams block that matches parameterlist.
If an instance with the specified name does not currently exist an implicit new_instance statement
is executed using the component name as the instance name. This instance will be created with
default properties.

Although it is possible to have values passed back with this mechanism, if the instance is
non-modal and is activated via its <exec> trigger which contains either an edit or display
command the results will not be as expected. This is explained further in section 4.8.1.3
Using OUT or INOUT parameters in a child form.

The standard processing for the <detail> trigger of navigation buttons assumes that the operation
name is EXEC (for the <exec> trigger) and the parameter list contains a single string item that is
input only. This is considered to be an associative list, and allows any number of values to be
passed to the receiving instance. This is usually all the components of the primary key for an object
which is to be retrieved from the database, but may include any other values that may be
referenced within the receiving instance.

Where parameterlist contains a large number of entries it can be made more readable by adopting
the following structure, which keeps each parameter on a separate line:

activate instance.operation %\
(parameter1 %\
,parameter2 %\
,parameter3 %\
,parameter4 %\
,parameter5)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-28 version: 04.008.000

4.8.1.2 Receiving Parameters (in the ACTIVATEd module)

In order to receive a message the receiving instance must have an operation defined with the
specified name, and this operation must have a params …. endparams block that matches every
entry in parameterlist. For example:

<exec> trigger
params

string pi_param1 : IN
string pio_param2 : INOUT
string po_param3 : OUT

endparams
…….

exit(0)

The operation can be the <exec> trigger, or a named operation within the <operations> trigger.
Note that operations INIT, CLEANUP, ACCEPT and QUIT do not have passed parameters.

Use one of the following prefixes on parameters so that they can be distinguished from local
variables and entity items:

pi_ on IN parameters
po_ on OUT parameters
pio_ on INOUT parameters

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-29 version: 04.008.000

4.8.1.3 Using OUT or INOUT parameters in a child form

When the <exec> trigger of a non-modal form is activated, and this trigger contains an edit or
display statement, please keep the following in mind:-

• As soon as the edit or display is encountered the non-modal form will appear, but control will
be passed back to the component instance that activated the non-modal form. The contents of
$status will be zero at this point, signifying that the activate command was successful. All
subsequent code in the trigger which issued the activate command will then be processed.

• Any statements in the <exec> trigger of the non-modal form that occur after the edit or display
statement have NOT been executed at this point. This means that any attempts to assign
values to OUT or INOUT parameters following the edit or display are not recognised.

• When control is returned to the activating component (following the edit or display statements
in the non-modal form), the OUT and INOUT parameters have the values that they had when
the edit or display statement was executed. This means that an OUT parameter can be
‘undefined’ if it was not assigned a value.

This problem can be avoided in the following way:-

• The parameters in the child form’s <exec> trigger should be defined as IN only.

• When the child form is ready to pass the updated data back to its parent (eg: in the <accept>

trigger) it should activate an operation in its parent, identifying the relevant objects in its list of
parameters

• This operation in the parent form should define the parameters as IN only.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-30 version: 04.008.000

4.8.2 Via the POSTMESSAGE command

The POSTMESSAGE command can only be sent to an instance that already exists. The instance
should contain the necessary code in its <async. interrupt> trigger in order to receive and process
any message. If an instance of that name does not exist the message will be passed to the
application <async. interrupt> trigger.

There is also a sendmessage command, but this cannot be used to communicate between
instances that are contained within different applications being run on different paths, therefore our
standard code uses the postmessage command only.

4.8.2.1 Sending a message

Within our standards when a child form is activated in order to modify the database (by adding,
updating or deleting a database occurrence) it is usual to inform the parent process of any such
update as soon as it has been committed.

Calls to the POSTMESSAGE proc are included within all those standard procs that commit
changes to the database. This proc will be called only when the global variable $$msgdata
contains a non-null value. The following variables are also used by the POSTMESSAGE proc:

$$msgdata The message string. Where this identifies a change to the database it is usual to
create this as an associative list containing all the fields from the changed
occurrence, and not just the primary key.

$$msgid An identifier for the message, which must not exceed 32 characters. If left blank
this will be set to the contents of $componentname .

$$msgdst Identifies the target instance for this message. If left blank this will be set to the
contents of $instanceparent.

This is an example of the minimum code required to pass a message to the parent instance after a
successful modification to the database.:

$$msgdata = "" ; load message for parent
putlistitems/occ $$msgdata, "<MAIN>"
$$msgid = “ENTRY_ADDED” | “ENTRY_UPDATED” | “ENTRY_DELETED” ; choose one

call OK_PROC

To ensure that $$msgdata contains a complete list of all the fields from the occurrence, (ie: to
avoid the results of subsetting) the field list for the entity should be set to ALL.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-31 version: 04.008.000

4.8.2.2 Receiving a message

The receiving instance (usually the parent) receives the message within its <async interrupt>
trigger. The contents of global variables $$msgid and $$msgdata are received as functions
$msgid and $msgdata respectively. The identity of the instance which generated the message is
contained in function $msgsrc.

<async interrupt> trigger

if ($msgid = “ENTRY_ADDED") ; entry added
creocc "<MAIN>",$curocc(<MAIN>)+1
getlistitems/occ $msgdata, "<MAIN>"
call READ_INNER_ENT(“<MAIN>”)

endif

if ($msgid = "ENTRY_UPDATED") ; entry updated
creocc "<MAIN>",$curocc(<MAIN>)+1
getlistitems/occ $msgdata, "<MAIN>"
retrieve/o "<MAIN>"
if ($status = 0) ; does not exist

discard "<MAIN>"
else

getlistitems/occ $msgdata, "<MAIN>"
call READ_INNER_ENT(“<MAIN>”)

endif
endif

if ($msgid = “ENTRY_DELETED") ; entry deleted
creocc "<MAIN>",$curocc(<MAIN>)+1
getlistitems/occ $msgdata, "<MAIN>"
retrieve/o "<MAIN>"
discard "<MAIN>"

endif

It is assumed that $msgdata is an associative list constructed from all the fields of the affected
occurrence. This will therefore contain not just the primary key but all the data.

Notice that there are no database retrievals to obtain the values for new or modified occurrences
as this would cause any partially built hitlist to be completed. This could have a drastic effect on
response times. The retrieve/o command is there simply to ensure that the occurrence identified
by the primary key within $msgdata is made current.

The processing in this trigger will be performed for each message received, and is not restricted to
a single message as the child process terminates.

As the results of additions and modifications are not retrieved from the database but overlaid within
the component’s external structure, the default processing within the <leave modified key> and
<validate key> triggers would reject these occurrences for being duplicates. For this reason these
triggers should be disabled.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-32 version: 04.008.000

4.8.3 Via the CALL command

4.8.3.1 Sending Parameters (on the CALL command)

Values to be passed to and/or passed back from a proc module can best be specified as a list of
arguments on the command line, as in the following example:

call EXAMINE_REPLACE(string, valueA, valueB)
if ($procerror)

call PROC_ERROR($procerrorcontext)
return(-1)

endif
if ($status)

…. ; conditional processing
endif
; STRING now has all occurrences of VALUEA replaced with VALUEB

In order for this to be successful a global or local proc module with that name must exist, and this
module must have a params …. endparams block that matches the argument list. If there is any
failure the call to PROC_ERROR will append the details to the message frame. Note that the proc
module may return a value in $status to indicate the results of its processing.

Upon completion of the called module some of these parameters may have different values. This
can only be determined by the direction indicator against each of those parameters within the
called module.

Where parameterlist contains a large number of entries it can be made more readable by adopting
the following structure, which keeps each parameter on a separate line:

call proc_module %\
(parameter1 %\
,parameter2 %\
,parameter3 %\
,parameter4 %\
,parameter5)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-33 version: 04.008.000

4.8.3.2 Receiving Parameters (in the CALLed Procedure)

Values to be received by the proc module are specified in a params …. endparams block. Each
entry has a direction indicator which can be one of IN, INOUT, or OUT.

entry EXAMINE_REPLACE ; examine STRING replacing OLD with NEW
params

string pio_string_in : INOUT
string pi_text_old : IN
string pi_text_new : IN

endparams
….
….
return(0)
end

Parameters marked as IN or INOUT should have values supplied by the calling object.

Parameters marked as OUT or INOUT may have their values updated before control is returned to
the calling object.

Use one of the following prefixes on parameters so that they can be distinguished from local
variables and entity items:

pi_ on IN parameters
po_ on OUT parameters
pio_ on INOUT parameters

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-34 version: 04.008.000

4.9 DATA VALIDATION

4.9.1 New triggers

Data validation within components has been enhanced with the following triggers that became
available with UNIFACE version 7.2.01:

<validate field> After declarative checks, and before the <leave field> trigger is activated.
<validate key> Before the <leave modified key> trigger is activated.
<validate occurrence> After declarative checks, and before the <leave modified occurrence>

trigger is activated.

If the code within these triggers sets $status to a negative value then the associated <on error>
trigger will be fired.

Entities which were created in earlier versions will not contain any code within the <validate key>
trigger. To take advantage of the additional processing the application model should be modified to
include a call to global proc VLDK_TRIGGER. Automatic validation of candidate keys will not be
performed unless the Validate property for that key is clicked ON in the Define Key form.

Standard validation rules can be defined in the <validate field> and <validate occurrence> triggers
within the application model, and will therefore be inherited by all components which reference
them. These triggers will be automatically invoked whenever the associated object is modified, or
when specifically requested in proc code. Provided that component-specific validation is defined
within the existing <leave field> and <leave modified occurrence> triggers inheritance from these
application model defaults will not be lost.

4.9.2 $dataerrorcontext

The details of any data validation errors are now recorded in function $dataerrorcontext. A new
global proc has been provided (DATA_ERROR) that will append these details to the message
frame to aid in any debugging efforts. This proc will be called automatically by the existing
ON_ERROR_E (entity) and ON_ERROR_F (field) procs, therefore additional programming effort is
not required.

Here is an example of the output from proc DATA_ERROR:

CONTEXT=VALIDATION
TOPIC=KEY
OBJECT=MNU_TRAN.MENU
OCC=1
KEY=1
ERROR=147
STATUS=-1
DESCRIPTION=0147 - Validation failed for key.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-35 version: 04.008.000

4.10 VERSION TRACKING

4.10.1 Version History

Various objects should contain a block of text similar to the following to aid in documentation.
• For components this should be in the Comments field of the component properties.
• For global procs this should be at the end after all the code.

;--
; Name: HELPA_PROC
;
; Description:
;
; Author: Tony Marston
;
; Date written: 01-07-99
;
; Current Version: 1.0.0
;
; Input parameters: $formname
; $fieldname
;
; Output parameters: none
;
; Update History:
; Date Updated By Details
; 02-07-99 Tony Marston Replaced RUN with ACTIVATE.

Whenever the object is amended the following should occur:-
• The object’s version number should be incremented
• A brief description of the change should be added to the history at the bottom.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-36 version: 04.008.000

4.10.2 Version Numbers Within Forms

During the life of a software module it is more than likely that it will be subject to numerous
updates, whether these are to fix bugs or to incorporate changes or enhancements requested by
the user. As it is more than likely that several copies of the software will exist in numerous places
(eg: the development environment, the test environment, the delivery environment, and one or
more user sites) it becomes necessary to have a mechanism whereby it is easy to check that a
module being run is the latest version available.

To this end every form will have its own version number - this will be held in a local variable (name
= $form_version$, type = string) which must be set to the current value as part of the initial
processing. The default INIT operation obtains this value from a local constant, therefore there is
no need to change the operation and loose inheritance from the component template.

This version number will be in the form AA.bbb.ccc where

AA is the major version number, starting at 01 and incremented by 1 for each major
change requested by the user.

bbb is the minor version number, starting at 000 and incremented by 1 for each minor
change requested by the user. This is reset to 000 whenever the AA portion is
incremented.

ccc is the count of bug fixes, starting at 000 and incremented by 1 for each bug fixed. This
is reset to 000 whenever the AA portion is incremented.

When a module is first released its version number should be 01.000.000.

This version number must be updated each time the module is changed, and precise details of the
change must be documented in the version history that can be found in the COMMENTS field of
the form’s properties.

The version number can be interrogated at run time by selecting the HELP -> HELP ABOUT option
from the pulldown menu bar.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-37 version: 04.008.000

4.10.3 Version Numbers Within Global Procs

In order to provide a mechanism that will display the current version numbers of the global
procedures the following code should be inserted at the start of every procedure:-

if ($$version_only) ; is flag set ?
$1 = "01.000.000" ; version number
$2 = "SYSTEM_LIBRARY" ; library
return(0)

endif

The format of the version number is as described earlier. This must be changed each time the
procedure is modified.

See template form X_VERS for an example of how the procedure version numbers can be
extracted and displayed. This will produce a screen similar to the following:-

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-38 version: 04.008.000

4.11 USE OF SELECTDB

The SELECTDB statement is used to provide a single value (or set of values) from any number of
occurrences within the database. Here are some typical examples:-

A) Find the highest value used for CUSTOMER_NO to reset a counter:

$1 = 0
selectdb max(customer_no) from "customer" %\

u_where (id_sman.customer = id_sman.salesman) %\
to $1

if (last_cust_no.salesman != $1) last_cust_no.salesman = $1

B) Accumulate values from each line in an invoice to give a total value:

$total$ = 0
selectdbsum(total_price) from "invoice_detail" %\

u_where (invoice_id.invoice_detail = invoice_id.invoice) %\
to $total$

For functions such as COUNT, SUM, MINIMUM, MAXIMUM and AVERAGE it is more
efficient to use the SELECTDB command than to retrieve all the occurrences into the form
(or a separate hidden form). In this way all the hard work is performed by the database,
with only the result(s) being passed back to the form. If multiple occurrences are passed
back to the form for processing then this increases the amount of network traffic, which
could contribute to poor response times.

1. Always initialise any output fields before invoking this command as the previous
contents may not be overwritten if zero occurrences match the selection criteria.

2. If the u_where clause does not include column_name = value where column_name is

an indexed field and value is other than null, this will initiate a full table scan. Range
checks (less than, greater than) on indexed fields may cause the index to be scanned
rather than the table itself, but this depends on the underlying database.

3. Be aware that the use of a u_where clause which includes column_name = “” may

cause the underlying DBMS to ignore any indexes and initiate a full table scan - on
tables with many entries this has a serious effect on performance.

4. The SELECTDB statement cannot be used in any components where the entities are
accessed by Object Services.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-39 version: 04.008.000

4.12 ACTIVE OBJECT HIGHLIGHTING

4.12.1 Active Field

The field that has focus can be highlighted by defining a value for the $active_field setting in the
.asn file. This relies on standard UNIFACE processing to automatically set the current field to the
specified colour, and to reset it as soon as focus changes to a different field.

This applies to every field within the system, except for those which have the cursor video option
in the layout properties turned off. This typically applies to commandbuttons and radiogroups.

4.12.2 Active Occurrence

In a form component that contains multiple occurrences the one that currently has focus can be
highlighted by defining a value for the $def_curocc_video setting in the .asn file. This relies on
standard UNIFACE processing to automatically set all fields of the current occurrence to the
specified colour, and to reset them as soon as focus changes to a different occurrence.

The $curocc_video setting in the .asn file would automatically apply this colour to all occurrences
within the application, however this has not been found to be 100% reliable. Instead use is made of
the curocc_video command within the <exec> trigger.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-40 version: 04.008.000

4.13 POPUP PROCESSING

4.13.1 Overview

This form of pick-list processing is required when two entities are defined in a ONE-to-MANY
relationship, but are painted on a form with MANY as the outermost entity and ONE as an inner
entity (thereby forming a ONE-to-ONE relationship).

ONE

MANY

ONE

MANY

FIELD1.MANY

FIELD2.MANY

DESCRIPTION.ONE

The ONE entity contains two fields: primary_key and description. It is possible for it to contain
more fields, but only these two are relevant in this example.

The MANY entity has its own primary key, and among its other fields is one called foreign_key,
which is used to relate it to the ONE entity. In these circumstances the entity ONE is known as the
foreign entity.

The screen does not contain either of the fields primary_key.one or foreign_key.many, but does
contain description.one. The description is often more meaningful to the user than an obscure
code.

Because the field foreign_key.many it not displayed on the screen its value cannot be changed
directly by the user, it can only be changed by invoking a popup form. This is a special form,
usually read-only, which lists the contents of the ONE entity and allows the user to choose one of
the occurrences. This causes the primary key of the chosen occurrence to be passed back to the
calling form, which is then able to retrieve it, filling in the description field on the screen, and
transporting the primary key value down to foreign_key.many.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-41 version: 04.008.000

4.13.2 POPUP Invocation

A popup form can be invoked in any of the following ways:-

a) By "double-clicking" on an empty DESCRIPTION field. (NOTE: "double-clicking" fires the
<detail> trigger, which is the same as using the fast key “<control>d”)

b) By "single-clicking" on the POPUP icon (containing an "up" arrow).

c) By entering any profile characters in the DESCRIPTION field, and by "double-clicking" on

either the field itself, or the icon.

If the user modifies the contents of the DESCRIPTION field and leaves the field without invoking
the popup in one of the prescribed manners, the field will be cleared and the associated foreign
key value will be set to null.

The profile (the contents of the DESCRIPTION field) is always passed to the popup form, even if it
is empty. This is a single string parameter, but as it is an associative list it can contain references
to several fields.

This profile is used by the popup form to retrieve entries from the relevant database tables.

If no entries are found the popup screen is not shown, and an error message is issued. If only one
entry is found its primary key is automatically passed back without any need to show the popup
screen. If more than one entry is found the popup screen is shown so that the user can pick one of
the entries. The user can leave a popup screen in one of the following ways:-

a) By putting the cursor on the required occurrence and pressing the button. The
popup form will exit and pass back details of the selected entry to the calling form, which will
retrieve that entry and display the relevant details. The cursor will then move on to the next field.

b) By double-clicking on the required occurrence (invoking the <detail> trigger). This has the same

effect as pressing the button.

c) By pressing the CANCEL button. The popup form will exit, no details will be passed back to the

calling form, a warning message will be issued, and the prompt will be positioned on the
DESCRIPTION field.

If an occurrence is selected within a popup form its primary key is loaded into global variable
$$selection as a list of field names and values. This automatically caters for primary keys that
consist of multiple items.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-42 version: 04.008.000

4.13.3 POPUP Coding

a) Form Contents

Define entity ONE inside the boundaries of entity MANY.
Define field description.one to the required size.
Ensure the field properties of description.one include "double click = <detail>".
Define a pushbutton immediately to the right of description.one (height = 1, width = 2), and
rename it as POPUP_BUTTON. If this has not been defined in the application model then
apply field template POPUP_BUTTON to establish the default settings.

b) <ON ERROR> trigger for FOREIGN_KEY.MANY

$prompt = “description.one ” ;***** change this line
call ON_ERROR_F

Note that the fieldname on the $prompt statement is enclosed in quotes - if it is not this will
generate a compiler warning (or an error under version 6.1d) on those forms which do not
actually contain the named field.

If the $prompt statement is inserted into the application model this will avoid the necessity of
having to paint it on the form so that the trigger can be amended locally. Due to a feature in
UNIFACE this would also require you to paint primary_key.one on the form otherwise no
value will be transported to foreign_key.many - this will also produce a compiler warning
saying that a key field has been painted more than once.

c) <START MOD> trigger for DESCRIPTION.ONE

release/e

d) <DETAIL> trigger for DESCRIPTION.ONE

if (fieldvalue != “”) ;***** optional
putitem/id $$profile, “fieldname”, fieldvalue ;***** optional

endif ;***** optional
call POPUP_DTL(“popup_form”) ; change “popup_form”
#include STD:FATAL_ERROR
if ($status = 0)

macro "^NEXT_FIELD"
endif

By default the profile passed to the popup form will contain the name and value of the current
field only. If additional values are required then insert as many of the optional putitem
statements as necessary in front of the call to POPUP_DTL.

e) <LEAVE FIELD> trigger for DESCRIPTION.ONE

call POPUP_LFLD
if ($status) return(-1)

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-43 version: 04.008.000

f) Definition of POPUP Button

The POPUP pushbutton can be included in the field list within the Application Model for each
relevant entity - as it is a non-database field it will not be included in any data transfers. It should
be painted on the form immediately after the description.one field, and should contain the
attributes listed below. These should not need amending:-

Description popup button

Initial value ^U_POPUP_BUTTON (identifies a Glyph entry)

Data type Image

Widget type Commandbutton

Interface template POPUP_BUTTON

Syntax template POPUP_BUTTON

Layout template POPUP_BUTTON

Characteristics Boilerplate

<detail> trigger call POPUP_BTN_DTL

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-44 version: 04.008.000

4.14 LOGICAL UPDATES ACROSS MULTIPLE FORMS

There may be occasions within a system where a logical transaction (a series of updates that are
to be considered as a single unit) needs to be spread across multiple forms. The approach taken
depends on how many of the forms in the group require dialog with the user.

4.14.1 Multiple forms with Single Dialog

This is where a form with user dialog does some updating of its own, but is required to call one or
more hidden forms (ie: without any user dialog) to carry out some additional updates. Any one of
these subordinate forms may also call other hidden forms, thus producing a hierarchy that may be
several levels deep.

To ensure that database integrity is maintained throughout this partitioned update, and that any
impact on database performance is kept to a minimum, the following points should be observed:-

a) Once the update sequence has started it must not be interrupted by any dialog with the user.
This means that only the primary (parent) form can contain an EDIT statement - all of the
subordinate (child) forms should be of type HIDDEN (ie: no dialog with the user).

b) The parent form must STORE its own changes without a COMMIT before calling any

subordinate forms.

c) No subordinate form should perform either a COMMIT or a ROLLBACK, as these must be

performed by the parent form as and when necessary.

d) There must be only a single COMMIT to cover the entire update sequence, and this must be

performed by the parent form only after successfully returning from all subordinate forms.

e) There must only be a single ROLLBACK to cover the entire update sequence in the event of an

error, and this must be performed by the parent form. It follows therefore that if any failure is
detected in any subordinate form then control must be returned immediately to the parent form
with an appropriate value set in $status.

The existing procs (STORE_PROC or OK_PROC) cannot be used in these circumstances as they
contain an automatic COMMIT after a successful STORE. This has necessitated the creation of
the following additional central procs:-

1) STORE_NO_COMMIT

This performs a STORE (without a COMMIT or ROLLBACK), and returns a status code of
either 0 (OK) or -1 (failed). It also does not display any message in the message window.

2) COMMIT_PROC

This performs a COMMIT and returns a status code of either 0 (OK) or -1 (failed). A
corresponding message is displayed in the message window.

3) ROLLBACK_PROC

This performs a ROLLBACK and issues the STORE FAILED message.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-45 version: 04.008.000

4) Sample <ACCEPT> trigger for the Parent form

call STORE_NO_COMMIT

if ($status = 0)
activate "FORMB" ; additional updates (1)

endif

if ($status = 0)
activate "FORMC" ; additional updates (2)

endif

if ($status = 0)
call COMMIT_PROC ; commit all changes

endif

if ($status = 0)
exit(0) ; AOK

else
call ROLLBACK_PROC ; undo all changes
return(-1)

endif

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-46 version: 04.008.000

4.14.2 Multiple Forms with Multiple Dialog

This is where a logical transaction is split across a group of forms, each having dialog with the
user. This may be used, for example, where an entity contains so many fields that they cannot all
be processed on a single form. In this case the group will be comprised of a single Control form
and one or more Auxiliary (or Overflow) forms. This can be represented in the following structure:-

CONTROL
FORM

AUXILIARY
FORM1 FORM2

AUXILIARY
FORMn

AUXILIARY

This structure has the following characteristics:-

a) All database activity (read, write, store, commit, and rollback) is handled by the Control form. All
entities and occurrences to be included in the logical transaction must be defined within the
Control form. This means that the decision to accept or cancel the update(s) is handled within
the Control form alone.

b) Auxiliary forms do not access the database (except for lookups on foreign entities) therefore all

relevant triggers can be disabled. The form type should be set to LIMITED.

c) Control forms may deal with multiple occurrences of multiple entities, but Auxiliary forms may

only deal with a single occurrence of a single entity (except for lookups on foreign entities).

d) Communication between the Control form and an Auxiliary form is via a single string variable

which is an associative list. The data can be inserted with the putlistitems/occ command, and
retrieved with the getlistitems/occ command.

e) Auxiliary forms may be called in any sequence, and as many times as required.

f) Auxiliary forms can only be called from Control forms - they cannot be called directly from a

menu.

The Control form requires code which achieves the following:-
• Activates a child form and passes the current data values to it.
• Has a method of receiving updated data as and when required (one of the following):

• As an operation which can be activated by the child, or
• By receiving a message in the <async interrupt> trigger via the postmessage command.

The auxiliary form requires code which achieves the following:-
• Receives data when activated by the parent.
• Displays the data and allows the user to make changes.
• Passes back the data to the parent only if the OK button is pressed (if CANCEL is selected

then no data is returned).

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-47 version: 04.008.000

4.15 ONLINE HELP

Every online form should have a pulldown menu bar that contains a HELP option. When selected
this should offer the following options:-

• Show Help
• Keyboard Map
• About...

4.15.1 Show Help

The <option> trigger contains the code macro “^HELP”, which fires the <help> trigger of the
current field or entity. Each of these triggers contains a call to the standard HELP_PROC, which
contains the following code:-

putitem/id parameters,"formname",$componentname
putitem/id parameters,"entname",$entname
putitem/id parameters,"fieldname",$fieldname
activate "%%$variation%%%_HELP".EXEC(parameters)

An example form is provided with the name XAMPLE_HELP.

This will fill the display area with help text for the field identified in fieldname . Pushbuttons are
available to ZOOM into this field, or to alternate the display between text for formname and text for
fieldname .

The creation of help text is normally the responsibility of the user as text created by technicians
(the development team) may not be readily understood by non-technicians (the users).

It is now possible for online help to be provided from external HTML files – please refer to to
HELP_PROC in Appendix G for more details.

4.15.2 Keyboard Map

The <option> trigger contains the code macro “^KEY_HELP” , which is a standard UNIFACE
function to display the current keyboard map. No further action is required.

4.15.3 About...

The <option> trigger contains the code call HELP_ABOUT , which contains the following code:-

putitem/id parameters,"form_name",$componentname
putitem/id parameters,"form_title",$formtitle
putitem/id parameters,"form_version"$form_version$
activate "%%$variation%%%_HELPA".EXEC(parameters)

An example form is provided with the name XAMPLE_HELPA.

The system version number and release date will need to be set manually. They should be
updated each time a set of modules is released, either to system testing or to the client.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-48 version: 04.008.000

4.16 OBTAINING NEXT NUMBER IN A SEQUENCE

There is sometimes the need to obtain the next number in a sequence, usually to provide a value
for a primary key. There are various different methods available, as described below.

4.16.1 Uniface Counters

UNIFACE provides the ability to maintain sets of counters inside the UOBJ file. These can be
created by the numset command and incremented by the numgen command, as shown in the
following sample procedure:-

entry GET_NEXT_NUMBER
params

string PI_COUNTER_NAME : IN
numeric PO_COUNTER_VALUE : OUT

endparams

numgen PI_COUNTER_NAME, 1, $variation ; increment counter
if ($status < 0) ; name not found

numset PI_COUNTER_NAME, 1, $variation ; create counter, start at 1
if ($procerror)

call PROC_ERROR($procerrorcontext)
rollback “$UUU”
return(-1)

endif
endif

commit "$UUU" ; update UOBJ

PO_COUNTER_VALUE = $result ; return result

return(0)

end GET_NEXT_NUMBER

This procedure can be called using code similar to the following:-

call GET_NEXT_NUMBER(“INVOICE_ID”, invoice_id.invoice)
if ($procerror)

call PROC_ERROR($procerrorcontext)
return(-1)

endif

However, using UNIFACE counters does have the following drawbacks:-

a) The update of UOBJ is committed before any updates to the application database, therefore if
there is any failure with the application updates the counter cannot be rolled back to its previous
value, especially if other users have incremented the same counter in the mean time.

b) Each time a counter is incremented the UOBJ file must be locked - this may cause problems if

there are a large number of users all trying to increment counters at the same time.

c) If the UOBJ file is ever replaced (eg: following the release of a new version of the application) all

the counters are lost. These may be re-instated manually, but this presupposes that the latest
counter values were obtained before the UOBJ file was replaced. It may be wise to create a

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-49 version: 04.008.000

special form that uses SELECTDB statements to identify the highest values found on the
application database and to reset the counters accordingly.

d) Users of the same application database must access the same set of counters in the same

UOBJ file, otherwise the same value will eventually be obtained from different sequences,
resulting in a duplicate primary key error when trying to update the database. If, for example,
groups of users in a large network are accessing different (local) copies of UOBJ then UNIFACE
counters cannot be used without the possibility of producing a duplicate number.

e) Users who share the same UOBJ file must also share the same application database. In the

situation where there are different copies of the application database (eg: for development,
system testing, user training, live) there will be gaps in the numbers used on any one copy of
the application database. This may cause confusion to the users, or may cause the field size to
be overflowed sooner than expected.

Due to these problems it is strongly recommended that UNIFACE counters not be used.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-50 version: 04.008.000

4.16.2 Runtime Retrieval

This method does not use a separate field on the database to hold the counter value. Instead it
uses the selectdb statement at the appropriate time to identify the highest number used so far on
the application database so that it can be incremented, as in the following example:-

$1 = 0
selectdb max(customer_no) from "customer" %\

u_where (sman_id.customer = sman_id.salesman) %\
to $1

customer_no.new_customer = $1+1

This method does, however, have the following drawbacks:-

a) Where the field is not indexed multiple database records will have to be scanned in order to
identify the highest number used, and the time taken to complete this statement will increase in
direct proportion to the number of entries on the specified database table.

b) If the form is capable of creating more than one new occurrence at a time then this increases
the areas that need to be searched in order to identify which is the highest value used so far -
the database and the form’s own external structure. This increases the complexity of the code,
and therefore increases the possibility of error.

c) It is possible that in the interval between executing the selectdb and actually performing the

store another user has crept in and used the same number. In order to avoid the update failing
with a duplicate primary key error the following code could be inserted into the <write> trigger:

write
while ($status = -7) ; duplicate primary key

customer_no = customer_no + 1 ; try next number
write

endwhile

If the field name used is indexed then the DBMS may scan the index rather than the table, which
will reduce the response time. In the example where the primary key of CUST_ADDRESS is a
combination of CUST_ID and ADDRESS_NO, the following code can be used to provide the next
available value for ADDRESS_NO:

$1 = 0
selectdb max(address_no) from "cust_address" %\

u_where (cust_id.cust_address = cust_id.customer) to $1
address_no.cust_address = $1 + 1

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-51 version: 04.008.000

4.16.3 Database Triggers

The underlying DBMS may support a function within a trigger that can generate the next available
value for a primary key field. This may be an efficient method, but it does present the following
disadvantages:-

1. Not all DBMS’s support this functionality, therefore the choice of database engines for this
application would be limited.

2. The value supplied by the DBMS would not be passed back to the UNIFACE form as part of

the store operation, therefore this mechanism cannot be used if the value is to be used for
another entity’s foreign key within the same operation.

3. As database triggers are defined manually within the database and are outside the control of

UNIFACE this means that application logic is split across separate environments, which could
lead to possible documentation and maintenance difficulties.

4.16.4 Database Procedures

The underlying DBMS may support a function within a procedure that can generate the next
available value for a primary key field. Unlike a trigger a procedure is called from within a
UNIFACE component and returns its result back to that component. However, it does present the
following disadvantages:-

1. Not all DBMS’s support this functionality, therefore the choice of database engines for this
application would be limited.

2. As database procedures are defined manually within the database and are outside the control

of UNIFACE this means that application logic is split across separate environments, which
could lead to possible documentation and maintenance difficulties.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-52 version: 04.008.000

4.16.5 Database Counters

This method uses counters that are located within the application database itself, thus avoiding
some of the problems with UNIFACE counters in a separate UOBJ file. These counters can be
located in any of the following places:-

4.16.5.1 Single Control Record

The control table contains a single record, but this contains a separate field for each counter. Every
time a new number is required from any counter the single control record must be locked, which
will cause delays and conflicts in a system with a large number of users. This method should
therefore be avoided.

4.16.5.2 Multiple Records in a Single Control File

There is still a single control file, but this time it contains a separate record (occurrence) for each
counter. Each record contains an identity (counter name) and value (last number used). This
method causes fewer locking conflicts as it is only when the same counter is updated that the
same record is locked.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-53 version: 04.008.000

4.16.5.3 Multiple Records in Multiple Files

When a counter value is used as a single-item primary key because that number must be unique
across the whole database (eg: a customer number, an invoice number) then that counter must be
obtained from a single source.

When a counter value is combined with another field (or fields) to produce a compound key the
location of this counter should be the record where the other field (or fields) form the primary key.

ONE

MANY

Contains the field LAST_SEQ_NO

Related to ONE entity via field FOREIGN_KEY
Primary Key = FOREIGN_KEY + SEQ_NO

In this example the primary key of the MANY entity is comprised of the foreign key field (which
relates it to the ONE entity) and a field called SEQ_NO. New values for SEQ_NO (MANY) are
obtained by incrementing the current value in LAST_SEQ_NO (ONE). Note the use of LAST
instead of NEXT - when an occurrence of ONE is created the initial value of LAST_SEQ_NO is
zero (or null). The code to obtain values for SEQ_NO should be similar to the following:-

<accept> trigger

retrieve/e “one” ; ** only if not already retrieved **
last_seq_no.one = (last_seq_no.one + 1) ; increment
seq_no.many = last_seq_no.one ; use

call OK_PROC ; update both MANY and ONE entities

This processing should take place at the last possible moment (ie: immediately prior to the store
command), therefore it may be necessary to assign a temporary value to SEQ_NO to avoid the
problem caused by leaving a required field with a null value. This may be done with code similar to
the following:-

<occurrence gets focus> trigger

if (seq_no.many = “”)
seq_no.many/init = 0 ; assign dummy value

endif

This has the advantage that it is only when creating occurrences of the MANY entity for the same
ONE entity that there will be any locking conflict.

Another bonus is that if it is required to retrieve only the latest occurrence of the MANY entity, this
can be done in a single operation as all the components of the primary key are available.

It may be possible to locate the ONE entity in the form where it is not related to the MANY
entity (eg: at the bottom), in which case the occurrence need not be retrieved until the
update is confirmed.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-54 version: 04.008.000

4.17 LIST PROCESSING

This is where the user must choose a value from a pre-defined list rather than inputting free-format
text. At present a list can be retrieved from the following sources:-

⇒ From the Application Database.
⇒ From the Application Model.
⇒ From the Application Message File.

4.17.1 Application Database

In this option each list is defined as a separate entity within the application model. The entity
normally contains only a brief code and a meaningful description. All references to this list will be
identified by a relationship within the application model. This option also requires a user function to
maintain the list of values as well as a read-only function (a popup form) which displays the list of
available values and allows the user to choose one.

This option is normally reserved for the following circumstances:-

⇒ Where there are a large number of values.
⇒ Where the number of values can be readily changed by the user.
⇒ Where the values do not have any affect on any subsequent processing.

The advantages of this option are:-

⇒ The contents of the list can be altered at any time by the user using the maintenance function
provided.

The disadvantages of this option are:-

⇒ If the software requires certain values an installation procedure is required when creating a new
(empty) copy of the application database.

⇒ Should not be used in those circumstances where specific values are set by or tested for within

the software, as the user could change the contents of the list which, without the corresponding
changes to the software, could lead to confusion.

⇒ It is not possible to have foreign language equivalents of the same code on the same

application database (unless language code is included as a data item).

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-55 version: 04.008.000

Replacing Popup form with DropDownList processing

Instead of having to create a popup form to cater for the picklist processing it is possible to utilise
the functionality of dropdownlists (or even radiogroups) on specific forms. However, this does
require some additional processing to transfer the contents of the list from the database into the
widget properties of the field at run time. This can be achieved with the following steps:-

a) Create a hidden form to transfer the database contents into a global variable (a separate
variable for each list). This form need contain only the database entity in question, and the
<execute> trigger should contain code similar to the following:-

$list$ = "" ; initialise list

retrieve

setocc "ENTITY",1

putlistitems/id $list$, id, description ; add entry to list from all occurrences

$$v_ENTITY = $list$; load into global variable

exit(0)

b) This hidden form must be run at least once in each session in order load the values into the
global variable. This may be done within the <execute> trigger of each form that references the
list using code similar to the following

if ($$v_ENTITY = “”) ; list is empty
activate “hidden form” ; extract from database

endif

Alternatively it may be done en masse as part of the application initialisation procedure (see
global procedure INIT_PROC).

if (!$$first_time_flag) ; has this been run yet?
$$first_time_flag = 1 ; no, but it has now
activate “hidden form” ; extract from database

endif

c) The contents of the global variable can be loaded into the relevant field at run time using code
as described in section 4.17.4 Manipulation of List Contents at run time.

This option Is not advisable where the contents of the table are subject to frequent
changes as the global variable can only contain the values that were available when the
hidden form was run. Any changes made to the database table after this time will not be
included in the variable until the hidden form is re-run. Unless a mechanism is
incorporated into the system to initialise the variable or re-run the hidden form the only
option would be to terminate the session and restart it..

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-56 version: 04.008.000

4.17.2 Application Model

In this option any reference to the list is not defined as a foreign key linked to the list entity, but as
a field with a widget type of RadioButton or DropDownList. The values for the list are hard-coded
within the application model, and do not require any extra coding when included in any form.

This option is normally reserved for the following circumstances:-

⇒ Where there are only a small number of values.
⇒ Where the range of values is fairly static (ie: not changed very often, if at all).
⇒ Where particular values are set or tested for by the application software.

The advantages of this option are:-

⇒ No installation procedure is required on a new (empty) application database.

⇒ No additional forms are required to maintain or examine the list.

⇒ Changes can only be made by the system developers, so can be synchronised with

corresponding changes to the software.

The disadvantages of this option are:-

⇒ It is not possible for the user to make any changes to the list.

⇒ If any changes are made to the list then all forms which reference the list must be re-compiled,

otherwise they will continue to display the previous list.

⇒ It is not possible to have foreign language equivalents of the same list within the application

model.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-57 version: 04.008.000

4.17.3 Application Message File

In this option the list is defined as a RadioButton or DropDownList, but the values are obtained
from the message file at run time.

The disadvantages of this option are:-

⇒ Can only be used where the contents of the list are static and pre-defined (eg: status values).

⇒ Can only be used where the list contains two values - an identity and a description.

⇒ Changes to the list which affect the number of items must be synchronised with corresponding

changes to the software.

The advantages of this option are:-

⇒ Minor changes (eg: to descriptions) can be made to the list without having to re-compile any
forms.

⇒ It is impossible for the user to change, and possibly corrupt, the contents of the list.

⇒ As lists of values are maintained within the software, not the application database, then no

installation procedure is required whenever a new copy of the application database is created.

⇒ The message file can contain copies of the list in different languages, with the version being

retrieved at run time being determined by the contents of $language.

This option does, however, require some additional procedure code, but this can be defined
centrally within the application model rather than being dealt with separately within each form.

In the following example the entity AUTHORITY has a field called STATUS which can have one of
the following values - 1=Outstanding, 2=Accepted, 3=Rejected. The steps to implement this are as
follows:-

a) Define the field within the application model

The field must be defined with an interface definition suitable for the code values, not the
descriptions. The widget type need not be set at this time as it can be defined as required on the
relevant form. It is possible for the same field to be defined as an Editbox on one form, a
RadioButton on another, and a DropDownList on a third.

b) Define an entry in the message file

The name of the entry should contain the prefix of “LIST_”. The entire list of values must then be
defined in the message text with each value being separated by <GOLD>semicolon, for example

1=Outstanding+;2=Accepted+;3=Rejected

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-58 version: 04.008.000

c) Transfer to a Global Variable

This avoids the need to access the message file more than once for the data. This requires code to
be inserted into the <exec> trigger of each relevant form, or after the test for $$first_time_flag
within global procedure INIT_PROC, similar to the following:-

$$v_auth_status = $text(list_auth_status) ; get list

The contents of the global variable can be loaded into the relevant field at run time using code as
described in the following section.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-59 version: 04.008.000

4.17.4 Manipulating List Contents at run time

The list of internal values and their associated external representations should be held in a global
variable. The contents of this variable can be obtained either from the application database, or
from the message file, as demonstrated in the previous sections.

a) Load complete list into field’s widget properties

$valrep(field.entity) = “%%$$global_variable” ; all occurrences
or

$fieldvalrep(field.entity) = “%%$$global_variable” ; current occurrence

If the form contains multiple occurrences of the named entity a single call to $VALREP will
load the list into ALL occurrences. A call to $FIELDVALREP will only load the list into the
current occurrence.

b) Making a dropdownlist display only

Changing the field syntax of a dropdownlist to “NED” will prevent the user from changing the
current value, however it does not prevent the user from scanning the list to see what other
alternatives are available. It is only when attempting to select a different option is the user informed
that it cannot be changed. To avoid this problem a custom widget has been created called
fDropNoEdit which has the following properties:-

fDropNoEdit=udropdownlist(3d=off;entries=0;forcefit=on;dynamic=on;autoselect=off)

The “entries=0” part allows the current value to be displayed, but disables the remainder of the list.

d) Temporarily remove an item from the list

There may be circumstances in which a particular value should not be available for selection, in
which case it can be removed from the current occurrence (without affecting the contents of the
global variable) with the following code:

delitem/id $fieldvalrep(status.authority), ”value”

e) Temporarily add an item to the list

There may be circumstances in which an additional value should be available for selection, in
which case it can be added to the current occurrence (without affecting the contents of the global
variable) with the following code:

putitem/id $fieldvalrep(status.authority), ”value”, “representation”

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-60 version: 04.008.000

4.18 HITLIST PROCESSING

 If a form has the potential for dealing with stepped hitlists, and this form can activate child forms
that retrieve occurrences from the same database entity, this can lead to potential performance
problems. There are various options for dealing with the hitlist before control is passed to the child
process. These are configurable on a transaction-by-transaction basis – the chosen option can be
specified in the CHILD_PROPERTIES field for the parent form on the Menu database

 The available options are as follows:

<blank> Default UNIFACE behaviour. If the hitlist in the parent process is
incomplete (ie: there are entries that match the current retrieve profile
that have yet to be retrieved from the database) then all unfetched
occurrences will be retrieved. NOTE THAT FOR LARGE DATABASE
TABLES THIS COULD RESULT IN A SIGNIFICANT DELAY.

TRANSACTION=TRUE Open up another database path for the child process, thus avoiding any
conflicts. NOTE THAT THIS WILL RESULT IN MULTIPLE DATABASE
OPENS FOR A SINGLE USER.

RELEASE=<entity> Drop the hitlist at the current point for the named entity. If the current
hitlist is incomplete then all unfetched occurrences will be dropped and
will no longer be available in the current operation - the user will have
to perform a <clear> followed by a <retrieve> in order to build a new
hitlist.

The last option uses the release command, which causes all occurrences that have been
retrieved from the database to have $dbocc changed from true to false.

Another way to avoid this conflict between parent and child formis to use a different database
entity. Two options are available:

a) Use an entity which is defined as a View within the database.

b) Create an exact copy of the target entity (not a subtype) for use in the List form, then in the
assignment file redirect this copy to the original enrity name. In this way UNIFACE will think
that you are using different physical entities and there will be no conflict in the hitlists between
the parent and child forms. The fact that the two entity names refer to a single physical
database table is something that is only known to, and handled by, the database engine. Note
that using a subtype will not have the same effect as all physical access is automatically
directed to the supertype.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-61 version: 04.008.000

4.19 AUTOMATIC RETRIEVE IN LIST FORMS

There are some forms where the dialog type is LIST that allow the user to enter their own selection
criteria using the profile area at the top of the screen. Depending on user requirements these can
be configured to perform an automatic retrieve upon initial entry. This option can be set by using
the Extra Parameter field for the transaction definition on the Menu database. This has the
following options:

$auto_retrieve$=N (default) No automatic retrieve. Upon initial entry the user will be presented
with an empty screen.

$auto_retrieve$=Y Upon initial entry perform an automatic retrieve. As no profile has been
defined yet this will cause all entries on that database table to be selected.

Whenever the function is selected the contents of this field is added to $$params, which is the
single parameter that is passed to every function that is selected via a menu screen. This is
processed in the <exec> trigger of that transaction in the following manner:

params
string $params$: IN

endparams

getlistitems/id/local $params$; copy to local variables

clear/e "<MAIN>"
clear/e "<RETRIEVE_PROFILE>"

if ($auto_retrieve$) ; is automatic retrieve turned on?
call LP_RETRIEVE ; yes

endif

curocc_video/inner "<MAIN>","DEF" ; set occurrence highlighting

edit <FIRST_FIELD.<RETRIEVE_PROFILE>>

The value for $auto_retrieve$ defined in Extra Parameters is then loaded into a local variable of
the same name (which must be predefined with type = boolean). The program can then take the
necessary action according to the value defined in this field.

NOTE: The contents of Extra Parameters on the Menu database is not restricted to the
$auto_retrieve$ option. Any number of values can be entered, and will be made available to the
program in the same manner. Any values not expected by the program will be ignored.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-62 version: 04.008.000

4.20 AUTOMATIC REFRESH OF CHILD INSTANCES

There are two possible scenarios for dealing with relationships in forms where the parent form
shows multiple occurrences and the child form shows a single occurrence which was selected in
the parent form. In the following example the parent form is of type LIST, and the child form is of
type DISPLAY:-

(1) Select occurrence 1 in form LIST, activate a new instance of DISPLAY for this occurrence.
Select occurrence n in form LIST, activate a new instance of DISPLAY for this occurrence.

This provides a separate instance of DISPLAY for each occurrence in LIST.

(2) Select occurrence 1 in form LIST, activate a new instance of DISPLAY for this occurrence.
Select occurrence n in form LIST, contents of DISPLAY changes accordingly.

Only one instance of DISPLAY is created, but its contents changes in line with each different
occurrence selected in LIST.

Either one of these options can be specified as the default by the relevant setting in the
assignment file. This can be changed at any point during the application by selecting the
CHILDREN option on the pulldown menu, then clicking on item REFRESH. This is a “toggle”
switch which is either ON or OFF. When it is ON a tick is shown in front of the item name, and the
automatic refresh feature is ON. If it is OFF (no tick) then this feature is turned off.

To take advantage of this feature the following code should be inserted into the <occurrence gets
focus> trigger of the main entity in the parent form:

if ($$refresh_children & !$empty)
call LP_PRIMARY_KEY
call REFRESH_CHILDREN

endif

There is another item on this pulldown menu called DELETE - this signifies that the current form
has children which can be deleted just by selecting this item. This is an alternative to deleting each
child instance individually.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 4-63 version: 04.008.000

4.21 APPLICATION STARTUP AND CLOSEDOWN

4.21.1 Application Startup

It is possible to perform some initial processing when the first form for an application is activated
during any session by amending the contents of your application’s INIT_PROC. It should contain
statements as in the following example:

$variation = “<application mnemonic>”
if (!$$first_time_flag) ; execute once only
 $$first_time_flag = 1 ; done!
 call SAVE_VARIATION($variation)
 <<...other initial processing...>>
endif

Additonal statements can be inserted within this if/endif clause as required, including the activation
of another form or service component. Note that the use of $$first_time_flag ensures that this
processing is performed only once per session.

Do not remove the call to the SAVE_VARIATION proc as this will prevent any closedown
processing.

4.21.2 Application Closedown

When a session terminates, either by the user logging out completely or returning to the logon
screen to start another session, it is possible to perform some closedown processing for each
application that was accessed during the session.

Just before the menu screen ends it will activate the closedown form for each application. The
name of this form will be the application library name ($variation) suffixed by “_CLOSE”. The
default processing for this form is simply to reset $$first_time_flag ready for the next session, but
it can be amended to perform additonal processing as required.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 5-1 version: 04.008.000

5. TIPS AND TRICKS

5.1 ENTERING PROFILES BEFORE A RETRIEVE

There are times when it is necessary to provide the user with the opportunity to enter selection
criteria before initiating a <retrieve> operation. This can cause the developer some difficuties
because if the standard entity definition is used then UNIFACE will perform all its syntax checks
and insist that all mandatory fields are not null. This is inconvenient if the user does not want, or is
unable, to provide a value for each mandatory field.

Firstly, a simple rule - do not use a single entity definition to both enter the <retrieve> profile and
display the results as you will tie yourself up in knots for the reason stated above.

The method used to get around this problem varies according to the form layout.

5.1.1 Profile and Results in the same screen

This is where the profile can be entered in one area of the screen (usually the top) and the results
displayed in another, thus requiring two separate entity frames. A common mistake is to use an
entity subtype for the selection criteria, but this hits the same problem with mandatory fields.

The simple solution is to define a dummy (non-database) entity in the application model called
RETRIEVE_PROFILE (or just PROFILE) in which you define all the fields you desire, but make
them optional. It is then a simple matter to use putlistitems/getlistitems to transfer the values
from the dummy entity to the real entity before initiating the <retrieve> operation.

This is the method that is employed in the component template for dialog type List 1.

5.1.2 Profile in a screen of its own

This is where the profile is entered on one screen, and the results displayed in another. In this case
it is possible to use the true entity definition, not a dummy, provided that you do the following:

a) In the component properties set Behaviour to ‘Limited’. This will not allow database updates to
be performed, therefore will not fire the field or occurrence validation triggers.

b) Replace the standard <ON_ERROR> trigger code for all fields with the following. This will allow
profile characters to be entered without rejecting them:

if ($error = 0126) ; syntax error
 if ($fieldprofile) return(0) ; allow profile characters
endif

message $text("%%$error")
return(-1)

This is the method that is employed in the component template for dialog type Select 1.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 5-2 version: 04.008.000

5.2 WHEN NULL EQUALS INFINITY

If a field is empty it is said to have a null value. However, there may be circumstances in which an
empty field should be treated as if it contained the highest possible value (infinity) instead of the
lowest possible value (null).

For example, an entity may contain an end date to signify when it becomes unavailable, so if it
contains a date that is in the past it should not be used. If an entity has no end-date it is usual
practice to display it as empty rather than as a dummy date in the future, but when a null value is
encountered in the comparison where end-date >= today it will always be rejected as it is
considered to contain a lower value instead of a higher one.

One way around this is to include the test for a null value in the comparison, as follows:-

read u_where (end_date >= target_date | end_date = “”)

Another method is to hold unspecified end-dates on the database as the highest date available, but
convert them to null before being displayed on any form. This removes the possibility of making a
mistake with the two-stage comparison. This requires code to convert the value from infinity to null
before displaying the retrieved value, and from null to infinity before writing to the database, as in
the following examples:-

a) <format> trigger for the field

if ($format = $date("31-12-9999")) $format = "" ; change infinity to null

b) <deformat> trigger for the field

if ($format = "") $format = "31-12-9999" ; change null to infinity

1. Some DBMS’s may not support dates as large as 31-12-9999 - check the manual for
details and adjust this value accordingly.

2. For comments on possible problems with the u_where statement please refer to the

previous section Use of SELECTDB.

UNIFACE Development Guidelines (Internals)

24 February 2002 Page 5-3 version: 04.008.000

5.3 TESTING FOR A RANGE OF VALUES

There may be some times when you need to test for multiple values within a variable. This can be
done using code such as the following:

If (NAME = “ALF” | NAME = “BILL” | NAME = “CHAS” | NAME = “DAVE”)
…….

This can also be done with the following:

If (NAME = ‘(ALF)(BILL)(CHAS)(DAVE)’) & (NAME != “”)
…….

Note the use of single quotes to indicate a syntax string.

5.4 HELP TO LOCATE ENTRIES IN THE MESSAGE FILE

When including some validation in a component that requires an entry from the message file it can
sometimes be quite tedious looking for the particular message that you want, particularly if entries
relating to the same topic are scattered among other entries. Failure to identify an existing
message may result in unnecessary duplication. One method which gives the ability of being able
to search through the message file by a particular topic is to put the topic name in the description
field. The topic may be the field name (eg: START_DATE, END_DATE, QUANTITY) or it may be a
general category (eg: SECURITY). Don’t forget to use upper case characters as this will make
searching easier.

5.5 PAUSING RETRIEVES ON HIGH-CAPACITY DATABASE TABLES

To avoid the possibility of a session being ‘locked’ for a significant period of time due to the
retrieval of a large number of database occurrences, it is possible to include code in the <read>
trigger which will interrupt the retrieve after a certain number of entries have been read. This code
is contained in global proc CHK_READ_LIMIT. It uses as its limit the value from $$read_limit=n
from the [logicals] section in the assignment file. As each record is read a counter is incremented
and compared with this limit. Each time the limit is reached the user will be presented with a dialog
box requiring a YES or NO response. If NO is selected the retrieve will be terminated at that point,
and all remaining entries in the hitlist will be dropped. If YES is selected the retrieve will continue
until the limit is reached again.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 1 version: 04.008.000

Appendix A: WIDGETS - STANDARD ENTRIES

The following settings are taken from the .INI file. Note that each widget type can have its own
logical font.

; Logical to physical widget mapping

fEditBox=ueditbox(font=feditbox;frame=on;3d=on;dblclk=detail;multiline=on;autoselect=on)
fNoEditBox=ueditbox(font=fnoeditbox;frame=on;3d=off;multiline=on;dblclk=detail)
fEditNumber=ueditbox(font=feditnumber;frame=on;3d=on;multiline=on;autoselect=on)
fNoEditNumber=ueditbox(font=fnoeditnumber;frame=on;3d=off;multiline=on)
fCheckBox=ucheckbox(3d=on;tristate=off)
fColumnButton=ucmdbutton(font=label;halign=left)
fComboBox=ucombobox(font=editfont;frame=on;3d=on)
fCommandButton=ucmdbutton(font=fbutton;tooltip=on)
fDropDownList=udropdownlist(font=fdrop;3d=on;forcefit=on;dynamic=on)
fDropNoEdit=udropdownlist(font=fdropnoedit;3d=off;forcefit=on;dynamic=on;entries=0)
fListBox=ulistbox(font=flist;frame=on;3d=on)
fMenuButton=ucmdbutton(font=fmenubutton;tooltip=off)
fRadioGroup=uradiogroup(font=fradio;frame=on;3d=on)
fSpinButton=uspinbutton(3d=on;frame=on;autoselect=on)
Dynalabel=ueditbox(font=Label;frame=off;3d=off;autoselect=off;dblclk=detail;multiline=on)
fTab=utab(font=ftab)
fTree=utree(font=ftree;3d=on;frame=on)

The “f” prefix in front of the widget name signifies a custom version. These widgets should
be used in preference to the standard versions provided by UNIFACE. If a new version of
the .ini file accompanies a new release of the product it will be necessary to copy these
definitions en bloc to the new file.

FEDITBOX and FNOEDITBOX are for ordinary data fields.
FEDITNUMBER and FNOEDITNUMBER are for numeric fields.

The EDIT and NOEDIT variations make it easy for the user to distinguish the difference
between fields that are editable and those that are display only.

The FDROPNOEDIT is for a DropDownList that is display only.

The multi-line option is needed for fields if right-alignment is required when using a
proportional font (see also Appendix E: Field Layout Templates).

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 2 version: 04.008.000

Appendix B: FONTS - STANDARD ENTRIES

The following settings are taken from the .INI file. These are used to map logical font names with
physical fonts.

[screen]
; Canvas fonts (note: Font0 is the basic screen font)
font0=Courier New,9,regular

; Default fonts for labels, buttons, and debugger
label=Arial Narrow,10,regular
buttons=Arial,8,bold
debug=Arial,10,regular

; Logical font used by toolbar, messageline
combo=Arial,11,bold

; Logical fonts used by development environment
Editfont=Arial,8,bold
Listfont=Arial,8,bold
Buttonfont=Arial,8,bold
GFP=Arial,8,bold

; Logical fonts used by Development environment
fEditbox=Arial,8,bold
fNoEditbox=Arial,8,regular
fEditNumber=Arial,9,bold
fNoEditNumber=Arial,9,regular
fButton=Arial,8,bold
fMenuButton=Arial,10,bold
fDrop=Arial,8,bold
fDropnoedit=Arial,8,regular
fRadio=Arial,8,bold
fList=Arial,8,bold
fTab=Arial,8,regular
fTree=Arial,8,regular

[printer]
font0=Courier New,10,regular

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 3 version: 04.008.000

Appendix C: FIELD INTERFACE TEMPLATES - STANDARD ENTRIES

NAME DATA
PACKING

LEN COMMENTS

B B 1 boolean (Y/N) (T/F) (0/1)

COLUMN_BUTTON C 22

DATE D 8 format CCYYMMDD
DATETIME E 14 format CCYYMMDDHHNNSS

I1 I 1 integer, range +/-127
I2 I 2 integer, range +/-32,767
I3 I 3 integer, range +/-8,388,607
I4 I 4 integer, range +/-2,147,483,647
I8 I 8 integer, range +/-92,233,720,368,547,757

MONEY M1 8 number, range +/-922,337,203,685,477.58

N1 N 1 Number, 1 digit, no decimals
N2 N 2 number, 2 digits, no decimals
N4 N 4 number, 4 digits, no decimals
N6 N 6 number, 6 digits, no decimals
N8 N 8 number, 8 digits, no decimals
N10 N 10 number, 10 digits, no decimals
N12 N 12 number, 12 digits, no decimals

POPUP_BUTTON C 3
PUSHBUTTON C 22

SS SS special string, shorthand=C*

TIME T 8 format HHMMSSTT

U_VERSION C 1

No templates are provided for fixed-length character strings as their sizes can vary from 1
byte up to a possible 7999 bytes - use SHORTHAND definitions instead.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 4 version: 04.008.000

Appendix D: FIELD SYNTAX TEMPLATES - STANDARD ENTRIES

NAME MAX
LEN

COMMENTS

CCYY_M 4 Century and Year, mandatory
CCYY_O 4 Century and Year, optional
COLUMN_BUTTON Noedit, noprompt

DATE_M 11 date, mandatory
DATE_O 11 date, optional

HIDDEN noedit, noprompt, nodisplay (widget type must be UNIFIELD)

MONEY_n_d_M 15 N digits, D decimals, mandatory, unsigned
MONEY_n_d_M_N 16 N digits, D decimals, mandatory, allow negatives

MONEY_n_d_O N digits, D decimals, optional, unsigned
MONEY_n_d_O_N N digits, D decimals, optional, allow negatives

N1_M/O 1 Number, 1 digit, mandatory/optional
N2_M/O 2 number, 2 digits, mandatory/optional
N4_M/O 4 number, 4 digits, mandatory/optional
N6_M/O 6 number, 6 digits, mandatory/optional
N8_M/O 8 number, 8 digits, mandatory/optional
N10_M/O 10 number, 10 digits, mandatory/optional
N12_M/O 12 number, 12 digits, mandatory/optional

NOEDIT noedit (display only)
NOPROMPT noedit, noprompt
PERCENT 6
POPUP_BUTTON noedit, noprompt
PUSHBUTTON noedit

S_M string (see note below), mandatory
S_M_U string, mandatory, uppercase
S_O string, optional
S_O_U string, optional, uppercase

TEXT_M text (see note below), mandatory
TEXT_O text (see note below), optional

TIME_HM_M 5 time, format=hh:nn, mandatory
TIME_HM_O 5 time, format=hh:nn, optional

U_VERSION noedit, noprompt, nodisplay

STRING fields: characters allowed = ASCII; delete control ON; delete text control ON

TEXT fields: characters allowed = FULL; allow bold; allow italic; allow underline

NUMERIC fields: length allows the input of the decimal point and optional sign, but not any
commas. Negative values cannot be input unless the LAYOUT definition specifically
includes a sign.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 5 version: 04.008.000

Appendix E: FIELD LAYOUT TEMPLATES - STANDARD ENTRIES

NAME FORMAT LEN COMMENTS

COLUMN_BUTTON centre aligned, not active cursor

DATE dd-MMM-yyyy 11
DATE_DMY dd-MMM-yyyy 11
DATETIME dd-Mmm-yy hh:nn:ss 18

MONEY_6_0 zzz,zz9 7 6 digits, no decimals, unsigned
MONEY_6_2 zzz,zz9p99 10 6 digits, 2 decimals, unsigned
MONEY_6_2_N -zzz,zz9p99 11 6 digits, 2 decimals, allow negatives
MONEY_9_2 zzz,zzz,zz9p99 14 9 digits, 2 decimals, unsigned
MONEY_9_2_N -zzz,zzz,zz9p99 15 9 digits, 2 decimals, allow negatives
MONEY_12_2 zzz,zzz,zzz,zz9p99 18 12 digits, 2 decimals, unsigned
MONEY_12_2_N -zzz,zzz,zzz,zz9p99 19 12 digits, 2 decimals, allow negatives

N2 z9 2 2 digits, unsigned
N4 zzz9 4 4 digits, unsigned
N6 zzzzz9 6 6 digits, unsigned
N8 zzzzzzz9 8 8 digits, unsigned
N10 zzzzzzzzz9 10 10 digits, unsigned
N12 zzzzzzzzzzz9 12 12 digits, unsigned

NOTINV not inverse, not active cursor
(used with HIDDEN syntax)

PERCENT Zz9p99 6 right aligned
POPUP_BUTTON 3 centre aligned, not active cursor
PUSHBUTTON 22 centre aligned, not active cursor

TIME_HM hh:nn 5

U_VERSION 1

For right-alignment of numeric values there are two methods:-

1. Specify alignment=right in the field layout (this only works if multiline=on is set for the
widget properties). All values will be aligned with the right-hand edge of the area
painted on the form, in which case any sign character should be at the beginning of the
format definition.

2. Precede the format definition with the letter “b” - this will replace any suppressed

zeroes with spaces rather than dropping the character completely, thereby aligning
from the left. This will cater for a trailing sign. AT PRESENT THIS DOES NOT WORK
SATISFACTORILY WITH PROPORTIONAL FONTS AS THE WIDTH OF THE SPACE
CHARACTER IS SMALLER THAN ANY DISPLAYED CHARACTER.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 6 version: 04.008.000

Appendix F: FIELD TEMPLATES - STANDARD ENTRIES

NAME DATA TYPE INTERFACE SYNTAX LAYOUT CHARACTERISTICS WIDGET TYPE INITIAL VALUE

B Boolean B DATABASE fCHECKBOX
COLUMN_BUTTON String COLUMN_BUTTON COLUMN_BUTTON COLUMN_BUTTON BOILERPLATE FCOLUMN_BUTTON
DATE Date DATE DATE_O DATE DATABASE fEDITBOX
DATE_FROM Date DATE DATE_O DATE NON_DATABASE fEDITBOX
DATE_TO Date DATE DATE_O DATE NON_DATABASE fEDITBOX
DYNALABEL String C20 NOEDIT NIN BOILERPLATE DYNALABEL
END_DATE Date DATE DATE_O DATE DATABASE fEDITBOX
MONEY_N_D Numeric MONEY_N_D MONEY_N_D_O MONEY_N_D DATABASE fEDITBOX
POPUP_BUTTON Image POPUP_BUTTON POPUP_BUTTON POPUP_BUTTON BOILERPLATE fCOMMANDBUTTON ^u_popup_button
POPUP_FIELD String
PUSHBUTTON String PUSHBUTTON PUSHBUTTON PUSHBUTTON BOILERPLATE fCOMMANDBUTTON
SS Super String SS TEXT_O DATABASE UNIFIELD
START_DATE Date DATE DATE_M DATE DATABASE fEDITBOX
TIME Time TIME TIME_HM DATABASE fEDITBOX
TIME_FROM Time TIME TIME_HMS_O NON_DATABASE fEDITBOX
TIME_TO Time TIME TIME_HMS_O NON_DATABASE fEDITBOX
U_VERSION String U_VERSION U_VERSION U_VERSION DATABASE fNOEDITBOX
VALUE_FROM Numeric NON_DATABASE fEDITNUMBER
VALUE_TO Numeric NON_DATABASE fEDITNUMBER

MONEY_N_D - ‘N’ is the number of digits before the decimal point, and ‘D’ is the number of decimal places.

POPUP_FIELD contains sample trigger code only.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 7 version: 04.008.000

Appendix G: GLOBAL PROCEDURES - STANDARD ENTRIES

All the following Global Procedures are defined in library SYSTEM_LIBRARY.

c) Initialisation ...9
G.1. ACT_BUTTONS - Put labels into buttons on the action bar... 9
G.2. COL_BUTTONS - Put labels into buttons on the column bar... 9
G.3. FULL_PROFILE_BTN - Put label into FULL PROFILE button ... 9
G.4. GET_INIT_VALUES - Obtain initial values for a transaction. ... 9
G.5. INIT_PROC - Standard proc for <init> operation .. 10
G.6. LOAD_INIT_VALUES - Load initial values for a transaction. ... 10
G.7. NAV_BUTTONS - Put labels into buttons on the navigation bar.. 10
G.8. SAVE_VARIATION – Save application name in a session list... 10

d) Component / Instance Processing...11
G.9. ACTIVATE_PROC - Create and activate a child instance ... 11
G.10. BUILD_INST_NAME - Build instance name using specified pattern.................................. 11
G.11. CHILD_PROPERTIES - Manage hitlist between parent and child process....................... 11
G.12. CHK_INST_NAME - Remove invalid characters from an instance name.......................... 12
G.13. CREATE_INSTANCE - Create a new instance of a component (special version) 12
G.14. DELETE_CHILDREN - Delete all child instances of the current component..................... 12
G.15. LAUNCH_TAB_PAGE - Create & activate an instance for a tab page 13
G.16. NEW_INST_PROC - Create a new instance of a component.. 13
G.17. POSTMESSAGE - Post a message to the parent of the current component 14
G.18. REFRESH_CHILDREN - Reactivate children with pkey of current occurrence 14

e) Database Processing..15
G.19. COMMIT_PROC - Commit outstanding changes to the database..................................... 15
G.20. ROLLBACK_PROC - Undo any pending database updates .. 15
G.21. STOREQ_PROC - Update the database, but quietly ... 15
G.22. STORE_NO_COMMIT - Update the database, but without a commit 15

f) Error Processing...16
G.23. DATA_ERROR - Pass $DataErrorContext to the Message Object. 16
G.24. GET_MESSAGE - Retrieve and display contents of Message Object............................... 16
G.25. IGNORE_MESSAGE – Remove messages from the Message Object............................. 16
G.26. PRINT_LIST – Print contents of indexed or asociative list in Message frame................... 16
G.27. PROC_ERROR - Pass $ProcErrorContext to the Message Object................................... 17
G.28. SET_ERROR - Add a message (type = ‘E’) to the Message Object.................................. 17
G.29. SET_FATAL - Add a message (type = ‘F’) to the Message Object.................................... 17
G.30. SET_INFO - Add a message (type = ‘I’) to the Message Object.. 17
G.31. SET_WARNING - Add a message (type = ‘W’) to the Message Object............................ 18

g) List/String Processing ...19
G.32. ADD_TO_LIST - Add contents of one associative list to another....................................... 19
G.33. ASSOC_TO_INDEXED - Convert an associative list into 2 indexed lists 19
G.34. DROP_FROM_LIST - Remove items from an indexed list... 19
G.35. DROP_NULL_ITEM - Remove item with null value from associative list........................... 19
G.36. ENTITY_LOAD - Load Entity Data from a string... 20
G.37. ENTITY_UNLOAD - Unload Entity Data to a string .. 20
G.38. EXAMINE_REPLACE - Examine string replacing ‘A’ with ‘B’... 20

h) Popup Processing ..21
G.39. POPUP_BTN_DTL - Standard <detail> trigger for popup buttons 21
G.40. POPUP_DTL - Standard <detail> trigger for popup fields .. 21
G.41. POPUP_INIT_PROC - Standard proc for <init> operation in popup forms........................ 21

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 8 version: 04.008.000

G.42. POPUP_LFLD - Standard proc for <leave field> trigger in popup fields 21
G.43. POPUP_PROC - Standard proc for the processing of popup forms.................................. 22
G.44. POPUP_PROFILE - Load retrieve profile into popup forms... 22
G.45. POPUP_QUIT_PROC - Standard proc for the <quit> trigger in popup forms 22

i) Triggers ..23
G.46. CLEAR_PROC - Clear current screen of all data ... 23
G.47. CLOSE_PROC - Close (terminate) the current form component....................................... 23
G.48. DISABLE - Disable a trigger .. 23
G.49. ERASE_PROC - Erase (delete) entries from the database ... 23
G.50. FRGF_PROC – Form Gets Focus Trigger.. 23
G.51. FRLF_PROC – Form Loses Focus Trigger .. 24
G.52. HELP_PROC - Run the Help form for the current application.. 24
G.53. LMK_PROC - Standard proc for the <leave modified key> trigger..................................... 24
G.54. OK_PROC - Standard proc for the OK button or <accept> trigger 24
G.55. ON_ERROR_E - Standard proc for the <on error> trigger for all entities 25
G.56. ON_ERROR_F - Standard proc for the <on error> trigger for all fields.............................. 25
G.57. PRINT_PROC - Standard proc for the <print> trigger (if required)..................................... 25
G.58. QUIT_PROC - Standard proc for the CANCEL button or <quit> trigger 25
G.59. RETRIEVE_PROC - Standard proc for the <retrieve> trigger.. 25
G.60. STORE_PROC - Standard proc for the <store> trigger ... 26
G.61. VLDK_PROC - Standard proc for the <validate key> trigger.. 26

j) Validation / Verification ..27
G.62. CHK_ITEM_ACCESS - Disable fields which are not accessible by the user..................... 27
G.63. CHK_READ_COUNT - Pause database retrieval after a number of records 27
G.64. CHK_TAB_ACCESS – Check if the user can access the pages of a tab widget............... 27
G.65. CHK_TRAN_ACCESS - Check if the user can access a transaction 28
G.66. CHK_TRAN_ACCESSQ - Check (quietly) if the user can access a transaction 28
G.67. VLDF_OBJSVC - Validate field/entity via an Object Service.. 28

k) Miscellaneous...29
G.68. DEFAULT_LANGUAGE – Get default language from Control File.................................... 29
G.69. BUILD_PROC_LIST - Build list of global procedures ... 29
G.70. DEBUG_PROC - Default proc for the <switch keyboard> trigger 29
G.71. DECRYPT – Decrypt a string .. 29
G.72. ENCRYPT – Encrypt a string .. 29
G.73. GET_SESSION_DATA – Get Session data from Menu Logon.. 30
G.74. GET_TRAN_DATA - Get transaction data from the Menu database................................. 30
G.75. HELP_ABOUT - Run the Help About form for the current application 30
G.76. OBJSVC_CLEAR - Clear Occurrences from an Object Service.. 31
G.77. PROC_VERSION - Obtain Procedure Version Number... 31
G.78. READ_INNER_ENT – Retrieve inner entities ... 32
G.79. SOUNDEX – Generate a Soundex Key from a string... 32

l) Audit Logging...33
G.80. AUDIT_BEFOREPROC – Take snapshot of data before it is changed 33
G.81. AUDIT_AFTERPROC – .. 33
G.82. AUDIT_EXCLUDE – Exclude those items not to be audited.. 33

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 9 version: 04.008.000

c) Initialisation

G.1. ACT_BUTTONS - PUT LABELS INTO BUTTONS ON THE ACTION BAR

This is called within the INIT operation. It identifies all the fields on the action bar, then loads their
labels from the message file using an Id of “B_” followed by the field name.

Call: call ACT_BUTTONS(action_bar)

Input params: action_bar - name of dummy entity containing action buttons

Return code: none

G.2. COL_BUTTONS - PUT LABELS INTO BUTTONS ON THE COLUMN BAR

This is called within the INIT operation. It identifies all the fields on the column bar, then loads their
labels from the message file using an Id of “B_” followed by the field name. If any field already has
an initial value defined then this will not be overwritten.

Call: call COL_BUTTONS(column_bar)

Input params: column_bar - name of dummy entity containing action buttons

Return code: none

G.3. FULL_PROFILE_BTN - PUT LABEL INTO FULL PROFILE BUTTON

Used in LIST forms to load the label for the Full Profile button. This is dimmed if the user does not
have access to select_tran.

Call: call FULL_PROFILE_BTN(button_id, select_tran)

Input params: button_id - name of dummy entity containing action buttons
select_tran - transaction that will be activated when this button is pressed

Return code: none

G.4. GET_INIT_VALUES - OBTAIN INITIAL VALUES FOR A TRANSACTION.

This procedure is available when activating an instance without using ACTIVATE_PROC. This
obtains any initial values for a transaction that have been defined on the Menu database. These
values will be loaded into a new occurrence by LOAD_INIT_VALUES.

Call: call GET_INIT_VALUES($init_values$)

Input params: none

Output params: $init_values$ - associative list used by LOAD_INIT_VALUES

Return code: 0=OK <0=failure ($init_values$ contains error message)

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 10 version: 04.008.000

G.5. INIT_PROC - STANDARD PROC FOR <INIT> OPERATION

This performs standard initialisation at the start of every online function (except for popup forms,
which use POPUP_INIT_PROC instead). Uses $$first_time_flag to perform initial processing for
the session. Loads the form title from the message file, using an Id of “T_” followed by the form id.

Each application should have its own version to contain application-specific settings.

Call: call INIT_PROC

Return code: none.

G.6. LOAD_INIT_VALUES - LOAD INITIAL VALUES FOR A TRANSACTION.

This is designed to be used in the <OGF> trigger of new (empty) occurrences that are about to be
added to the database. It transfers the contents of $init_values$ to the current occurrence.
Keywords such as $date and $time are translated into real values.

Call: call LOAD_INIT_VALUES($init_values$)

Input params: $init_values$ - associative list obtained by GET_TRAN_DATA.

Output params: none

Return code: none.

G.7. NAV_BUTTONS - PUT LABELS INTO BUTTONS ON THE NAVIGATION BAR

This is called within the INIT operation. It identifies all the fields on the navigation bar, then loads
their labels from the message file using an Id of “B_” followed by the field name. If the transaction
of that name is not on the user’s access list then the label will be dimmed.

Call: call NAV_BUTTONS(navigation_bar)

Input params: navigation_bar - name of dummy entity containing navigation buttons

Return code: None

G.8. SAVE_VARIATION – SAVE APPLICATION NAME IN A SESSION LIST

This is called within the INIT operation. It saves the current application library name in a list so that
when the session terminates a closedown form can be activated for each applicaton that was
accessed during the session.

Call: call SAVE_VARIATION($variation)

Input params: $variation - library name for the current application.

Return code: None

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 11 version: 04.008.000

d) Component / Instance Processing

G.9. ACTIVATE_PROC - CREATE AND ACTIVATE A CHILD INSTANCE

Used in navigation buttons to activate a form component. Calls CREATE_INSTANCE first to
validate and create the instance. The instance is activated (or re-activated if it already exists) using
the specified operation name, and with a single parameter (the contents of $$params).

Call: call ACTIVATE_PROC

Input params: $$component - id of form to be activated
$$instance - name to be used for this instance
$$properties - properties (optional - see CREATE_INSTANCE)
$$operation - operation name (optional - default is EXEC)
$$params - parameter string (optional - associative list)

Return code: 0 = OK <0 = cannot activate >0 = other error

G.10. BUILD_INST_NAME - BUILD INSTANCE NAME USING SPECIFIED PATTERN

Used in CREATE_INSTANCE to construct an instance name using the pattern defined in field
INSTANCE_NAME for the transaction on the Menu database. PARAMS is the same associative
list that is passed from the parent form to the child being activated.

Call: call BUILD_INST_NAME(component, params, pattern, instance)

Input params: component - component name
params - associative list to be passed to the instance
pattern - to be used to construct instance name

Output params: instance - instance name

Return code: 0 = OK <0 = error

G.11. CHILD_PROPERTIES - MANAGE HITLIST BETWEEN PARENT AND CHILD PROCESS

Used in CREATE_INSTANCE before a child process is launched. If input_string contains
“release=<entity>” then the current hitlist on the named entity in the parent process will be
truncated. If input_string contains “transaction=true” this will cause a new database path to be
opened for the child process, thus avoiding any conflict with the hitlist.

Call: call CHILD_PROPERTIES(input_string, properties)

Input params: input_string - from CHILD_PROPERTIES on table MENU_TRAN in the
menu database, for the parent process.

Output params: properties - passed to new_instance command

Return code: none.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 12 version: 04.008.000

G.12. CHK_INST_NAME - REMOVE INVALID CHARACTERS FROM AN INSTANCE NAME

An instance name can only contain letters, numbers and underscores, and must not be more than
16 characters long. This is called within the CREATE_INSTANCE proc.

Call: call CHK_INST_NAME(instance_name)

Input params: instance_name - original value

Output params: instance_name - with any invalid/excess characters removed

Return code: none

G.13. CREATE_INSTANCE - CREATE A NEW INSTANCE OF A COMPONENT (SPECIAL VERSION)

This proc is designed to be used only by ACTIVATE_PROC.

1. Calls GET_TRAN_DATA using $$component as the transaction identity, and checks to see if
this function is on the user’s access list. This returns all data on that transaction.

2. Calls BUILD_INST_NAME to construct the name to be used for this instance.
3. Calls CHK_INST_NAME to ensure that the instance name is valid.
4. If an instance with this name already exists then a new one will not be created.
5. Sets $variation to contents of LIBRARY from transaction details (if not blank).
6. $$properties will be updated to include the form’s dimensions if HORIZPOS and VERTPOS

have been defined on the transaction details).
7. If the current form is non-modal then $$properties is changed to force the new form to be non-

modal, thus overriding the component defaults.
8. Calls CHILD_PROPERTIES if this field is not empty.
9. Calls ADD_TO_LIST to update $$params if EXTRA_PARMS is not blank.
10. $$params will be update to include any initial values if these have been defined on the Menu

database for the transaction. These will be inserted with the Id of $init_values$ so that they
can only be accessed after the contents of $$params is loaded into component variables.

11. Issues new_instance, and calls PROC_ERROR if a negative status is returned.

Call: call CREATE_INSTANCE

Input params: $$component - component name
$$instance - instance name
$$properties - properties for new instance
$$params - parameters for new instance

Return code: 0 = OK <0 = cannot create

G.14. DELETE_CHILDREN - DELETE ALL CHILD INSTANCES OF THE CURRENT COMPONENT

If the DELETE option is chosen in the pulldown menu then all instances which are attached to the
current instance (ie: its children, and all their children) will be deleted.

Call: call DELETE_CHILDREN(instance_id)

Input params: instance_id - id of instance with children to be deleted

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 13 version: 04.008.000

G.15. LAUNCH_TAB_PAGE - CREATE & ACTIVATE AN INSTANCE FOR A TAB PAGE

This proc is referenced within the component template for tab parents. It should be included in the
<value changed> trigger for the tab field itself, and in the <exec> trigger in order to activate the first
tab page. NOTE: the user’s access to tab pages should have been already verified with a call to
CHK_TAB_ACCESS.

1. Check if the field value is a component name or an instance name – if it is an instance name
then setformfocus on that instance and exit.

2. Call CREATE_INSTANCE to create an instance of this component.
3. Update the tab field’s valrep to replace “component=label” with “instance=label”.
4. Activate OUTPUT_DATA operation within current component to obtain data for this tab page.
5. Activate the tab page instance.

Call: call LAUNCH_TAB_PAGE(tab_field)

Input params: tab_field - the name of the tab field
$params$ - used by CREATE_INSTANCE

Output params: none

Return code: 0 = OK <0 = error

G.16. NEW_INST_PROC - CREATE A NEW INSTANCE OF A COMPONENT

This proc is available for general use, usually to create a service component.

1. Calls INSTANCE_NAME to ensure that instance contains a valid name.
2. If an instance with this name already exists then a new one will not be created.
3. Calls GET_TRAN_DATA, & inserts HORIZPOS and VERTPOS into properties.
4. If current form is modal then inserts “modality=modal” into properties.
5. Calls PROC_ERROR if the new_instance command returns a negative status.

Call: call NEW_INST_PROC(component, instance, properties)

Input params: component - component name
instance - name to be used for this instance
properties - optional (to override default settings)

Return code: 0 = OK <0 = cannot create

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 14 version: 04.008.000

G.17. POSTMESSAGE - POST A MESSAGE TO THE PARENT OF THE CURRENT COMPONENT

Called automatically by OK_PROC, STORE_PROC, STOREQ_PROC and COMMIT_PROC after
a successful database update. This will sends the contents of $$msgid and $$msgdata to the
instance identified in $$msgdst.

Call: call POSTMESSAGE(msgdst, msgid, msgdata)

Input params: msgdst - destination (optional - default is $instanceparent)
msgid - identifier (optional, default is $componentname)
msgdata - message (a string)

Output params: msgdata - cleared

Return code: 0 = OK <0 = error

G.18. REFRESH_CHILDREN - REACTIVATE CHILDREN WITH PKEY OF CURRENT OCCURRENCE

This is included in the <ogf> trigger of the main entity in forms of dialog type LIST which contain
navigation buttons. If the REFRESH option on the pulldown menu is set ON then each time a
different occurrence is given focus then all child instances of that form will be automatically re-
activated with the primary key of the new occurrence. This will cause the contents of the child
instances to switch to those of the new occurrence.

Call: call REFRESH_CHILDREN

Input params: $$params - primary key of current occurrence

Output params: $$operation - set to “EXEC”
$$properties - cleared

Return code: 0 = OK <0 = error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 15 version: 04.008.000

e) Database Processing

G.19. COMMIT_PROC - COMMIT OUTSTANDING CHANGES TO THE DATABASE

This is to be used after the STORE_NO_COMMIT proc. A rollback is performed in the event of an
error. If no errors are found and $$msgdata is not empty, the POSTMESSAGE proc is called to
send a message to another component (usually the parent). Includes call to AUDIT_STOP.

Call: call COMMIT_PROC

Input params: $$msgdst - passed to POSTMESSAGE proc
$$msgid - passed to POSTMESSAGE proc
$$msgdata - passed to POSTMESSAGE proc

Return code: 0 = OK <0 = error

G.20. ROLLBACK_PROC - UNDO ANY PENDING DATABASE UPDATES

This is used with the STORE_NO_COMMIT proc if any store errors are found. Displays a standard
“store failed” message, then issues a rollback to undo any database changes. Includes call to
AUDIT_STOP.

Call: call ROLLBACK_PROC

Output params: $$msgdata - cleared

Return code: -1

G.21. STOREQ_PROC - UPDATE THE DATABASE, BUT QUIETLY

Same as STORE_PROC, but does not issue the “STORE OK” message. If no errors are found
and $$msgdata is not empty, the POSTMESSAGE proc is called to send a message to another
component. Includes call to AUDIT_START and AUDIT_STOP.

Call: call STOREQ_PROC

Input params: $$msgdata - passed to POSTMESSAGE proc
$$msgdst - passed to POSTMESSAGE proc
$$msgid - passed to POSTMESSAGE proc

Return code: 0 = OK <0 = error

G.22. STORE_NO_COMMIT - UPDATE THE DATABASE, BUT WITHOUT A COMMIT

This is to be used when a logical update is split across several forms instead of the usual single
form. Does not contain a commit, but issues a rollback if there is a failure.

Call: call STORE_NO_COMMIT

Return code: 0 = OK <0 = error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 16 version: 04.008.000

f) Error Processing

G.23. DATA_ERROR - PASS $DATAERRORCONTEXT TO THE MESSAGE OBJECT.

This is used to pass the contents of $DataErrorContext to the Message Object. It is called from
within the ON_ERROR_E and ON_ERROR_F procs.

Call: call DATA_ERROR($DataErrorContext)

Input params: $DataErrorContext - the context of the last validation error

Return code: -1

G.24. GET_MESSAGE - RETRIEVE AND DISPLAY CONTENTS OF MESSAGE OBJECT

This is used to retrieve and display any messages that have been written to the Message Object.
Error/Info/Warning messages are displayed in the message line while data errors and proc errors
are written to the message frame. This uses proc PRINT_LIST.

Call: call GET_MESSAGE

Return code: the message count

G.25. IGNORE_MESSAGE – REMOVE MESSAGES FROM THE MESSAGE OBJECT

This is used to remove specified messages that may have been written to the Message Object so
that they are excluded from the subsequent call to GET_MESSAGE.

Call: call IGNORE_MESSAGE(messagelist)

Input params: messagelist - an indexed list of message identities

Return code: none

G.26. PRINT_LIST – PRINT CONTENTS OF INDEXED OR ASOCIATIVE LIST IN MESSAGE FRAME

This is used to print the contents of the passed list in the message frame. This list may be indexed
or associative. Each item in the list is output on a separate line to make it easier to read.

Call: call PRINT_LIST(list)

Input params: list - an indexed or associative list

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 17 version: 04.008.000

G.27. PROC_ERROR - PASS $PROCERRORCONTEXT TO THE MESSAGE OBJECT.

This is used to pass the contents of $ProcErrorContext to the Message Object as a fatal error,
along with message M_90023.

Call: call PROC_ERROR($ProcErrorContext)

Input params: $ProcErrorContext - the context of the last procedure error

Return code: -1

G.28. SET_ERROR - ADD A MESSAGE (TYPE = ‘E’) TO THE MESSAGE OBJECT

This is used to write an error message to the Message Object for subsequent retrieval by the
GET_MESSAGE proc. The message type is set to ‘E’. Optional parameters will be substituted in
the message text at points signified by ‘%%$1’, ‘%%$2’ etc, up to ‘%%$5’.

Call: call SET_ERROR(MessageText)

Input params: Message Text - either a text string or
- the id of a message file entry followed by optional parameters
in the format ‘;1=parm1;2=parm2;. . .;$prompt=<fieldname>’

Return code: 0 = OK <0 = failure with the Message Object

G.29. SET_FATAL - ADD A MESSAGE (TYPE = ‘F’) TO THE MESSAGE OBJECT

This is used to write an error message to the Message Object for subsequent retrieval by the
GET_MESSAGE proc. The message type is set to ‘F’.

Call: call SET_FATAL(MessageText)

Input params: Message Text - see SET_ERROR

Return code: 0 = OK <0 = failure with the Message Object

G.30. SET_INFO - ADD A MESSAGE (TYPE = ‘I’) TO THE MESSAGE OBJECT

This is used to write an error message to the Message Object for subsequent retrieval by the
GET_MESSAGE proc. The message type is set to ‘I’.

Call: call SET_INFO(MessageText)

Input params: Message Text - see SET_ERROR

Return code: 0 = OK <0 = failure with the Message Object

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 18 version: 04.008.000

G.31. SET_WARNING - ADD A MESSAGE (TYPE = ‘W’) TO THE MESSAGE OBJECT

This is used to write an error message to the Message Object for subsequent retrieval by the
GET_MESSAGE proc. The message type is set to ‘W’.

Call: call SET_WARNING(MessageText)

Input params: Message Text - see SET_ERROR

Return code: 0 = OK <0 = failure with the Message Object

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 19 version: 04.008.000

g) List/String Processing

G.32. ADD_TO_LIST - ADD CONTENTS OF ONE ASSOCIATIVE LIST TO ANOTHER

This is used to merge the contents of one associative list with another. Where an entry exists in
both lists the original entry is overwritten.

Call: call ADD_TO_LIST(additions, original)

Input params: additions - values to be merged
original - original values

Output params: original - updated with contents of list1

Return code: none

G.33. ASSOC_TO_INDEXED - CONVERT AN ASSOCIATIVE LIST INTO 2 INDEXED LISTS

Call: call ASSOC_TO_INDEXED(assoc, id_list, value_list)

Input params: assoc - associative list

Output params: id_list - indexed list containing ‘id’ part only
value_list - indexed list containing ‘value’ part only

Return code: none

G.34. DROP_FROM_LIST - REMOVE ITEMS FROM AN INDEXED LIST

When a list of items is obtained from a function (such as $entinfo), but needs to be edited before
subsequent processing, this proc can be used to remove named items from the list.

Call: call DROP_FROM_LIST(list, exclude_list)

Input params: list - initial list of items
exclude_list - items to be removed from the initial list

Output params: list - with items removed

Return code: none

G.35. DROP_NULL_ITEM - REMOVE ITEM WITH NULL VALUE FROM ASSOCIATIVE LIST

A list obtained by putlistitems/occ will extract all items and their values, even those which do not
have values. This proc will remove such items from the list.

Call: call DROP_NULL_ITEM(list)

Input params: list - associative list

Output params: list - contains only items with non-null values

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 20 version: 04.008.000

G.36. ENTITY_LOAD - LOAD ENTITY DATA FROM A STRING

This will take the contents of an associative list created by the ENTITY_UNLOAD proc and transfer
the data into the corresponding entities of the current component.

Call: call ENTITY_LOAD(EntityData)

Input params: EntityData - associative list

Output params: none

Return code: none

G.37. ENTITY_UNLOAD - UNLOAD ENTITY DATA TO A STRING

This will unload the data from all occurrences of the named entity into an associative list. The data
for each occurrence will have the id of ‘entname\occno’. If any occurrence has inner entities these
will be appended to the list before moving on to the next occurrence.

Call: call ENTITY_UNLOAD(EntityId, EntityData)

Input params: EntityId - name of the starting entity

Output params: EntityData - contains data in an associative list

Return code: none

G.38. EXAMINE_REPLACE - EXAMINE STRING REPLACING ‘A’ WITH ‘B’

This proc examines a string and replaces all occurrences of delimiter A (any character string) with
delimiter B (any character string). This is typically used to replace “<gold>semicolon” with another
character before storing a list on the database.

Call: call EXAMINE_REPLACE(string, old, new)

Input params: string - any string
old - old delimiter
new - new delimiter

Output params: string - contents adjusted

Return code: none.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 21 version: 04.008.000

h) Popup Processing

G.39. POPUP_BTN_DTL - STANDARD <DETAIL> TRIGGER FOR POPUP BUTTONS

Inserted into the <detail> trigger of the pushbutton that activates a popup. This actually causes the
<detail> trigger of the previous field (the “popup” field) to be fired.

Call: call POPUP_BTN_DTL

Input params: $$popup_field_name - see POPUP_LFLD
$$popup_field_value - see POPUP_LFLD

Return code: none

G.40. POPUP_DTL - STANDARD <DETAIL> TRIGGER FOR POPUP FIELDS

Inserted into the <detail> trigger of a field which can only be populated by the popup mechanism,
and not by direct user input. Please refer to section 4.13 POPUP Processing for more details. If the
current field is not empty its contents will be added to the profile area before POPUP_PROC is
called to activate the specified popup form.

Call: call POPUP_DTL(popup_form)

Input params: popup_form - name of popup form
$$profile - profile to be passed to the popup form

Output params: $$profile - initialised
$$selection - primary key of user’s selection (associative list)

Return code: 0 = OK <0 = error >0 = nothing selected

G.41. POPUP_INIT_PROC - STANDARD PROC FOR <INIT> OPERATION IN POPUP FORMS

Performs standard initialisation for popup forms. Loads the form title from the message file, using
an id of “T_” followed by the form name.

Call: call POPUP_INIT_PROC

Return code: none.

G.42. POPUP_LFLD - STANDARD PROC FOR <LEAVE FIELD> TRIGGER IN POPUP FIELDS

Inserted into the <leave field> trigger of the popup field. If the field has changed the following
processing takes place:
1. The current value is stored in global variables for use by POPUP_BTN_DTL.
2. The current entity is cleared.
3. $occcheck on the outer entity is set to force the <LMO> trigger.

Call: call POPUP_LFLD

Output params: $$popup_field_name - name of current field
$$popup_field_value - value in current field

Return code: 0 = OK <0 = error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 22 version: 04.008.000

G.43. POPUP_PROC - STANDARD PROC FOR THE PROCESSING OF POPUP FORMS

Called by POPUP_DTL. Will activate the specified form, then issue a retrieve for the occurrence
selected by the user.

Call: call POPUP_PROC(popup_form, profile, selection)

Input params: popup_form - name of popup form
profile - retrieve profile (associative list - optional)

Output params: selection - primary key selected (associative list)
profile - initialised

Return code: 0 = OK <0 = error >0 = nothing selected

G.44. POPUP_PROFILE - LOAD RETRIEVE PROFILE INTO POPUP FORMS

This is used in popup forms to transfer the profile values to the corresponding fields in the specified
entity before attempting to retrieve records from the database.

Call: call POPUP_PROFILE(profile, entname)

Input params: profile - associative list
entname - entity name

Return code: none

G.45. POPUP_QUIT_PROC - STANDARD PROC FOR THE <QUIT> TRIGGER IN POPUP FORMS

Signals that the user left a popup form without making a selection.

Call: call POPUP_QUIT_PROC

Return code: exit(1), which terminates the current form.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 23 version: 04.008.000

i) Triggers

G.46. CLEAR_PROC - CLEAR CURRENT SCREEN OF ALL DATA

Can be included in the <clear> trigger, if required. Performs a RELEASE to disconnect the current
data from the database so that it can be made available as the default for new input. If the data has
already been released then it will be CLEARed instead.

Call: call CLEAR_PROC

Return code: none

G.47. CLOSE_PROC - CLOSE (TERMINATE) THE CURRENT FORM COMPONENT

Used by functions that do not have any database updates, therefore should be included in both the
<accept> and <quit> triggers.

Call: call CLOSE_PROC

Return code: none, as the proc issues an exit(0), which terminates the current form.

G.48. DISABLE - DISABLE A TRIGGER

This issues a standard “This function is disabled” message. It should be inserted into any trigger
that the user may expect to use, but which has been specifically disabled.

Call: call DISABLE

Return code: -1

G.49. ERASE_PROC - ERASE (DELETE) ENTRIES FROM THE DATABASE

Can be inserted into the <erase> trigger for specified functions. Will erase all retrieved entries from
the database, followed by a commit.

Call: call ERASE_PROC

Return code: 0 = OK 0 = error >0 = not allowed

G.50. FRGF_PROC – FORM GETS FOCUS TRIGGER

Resets $VARIATION for this form when it regains focus using the value saved in
$$FORM_SETTINGS by FRLF_PROC.

Call: call FRGF_PROC

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 24 version: 04.008.000

G.51. FRLF_PROC – FORM LOSES FOCUS TRIGGER

Saves $VARIATION for this form in $$FORM_SETTINGS when it loses focus, to be restored by
FRGF_PROC.

Call: call FRLF_PROC

Return code: none

G.52. HELP_PROC - RUN THE HELP FORM FOR THE CURRENT APPLICATION

Inserted into every entity <help> trigger, and in the SHOW HELP option on the pulldown menu.
This activates a form with the name “_HELP” prefixed by the contents of $variation.

NOTE: If an entry called <variation>_HTMLHELP=<directory> has been defined in the [logicals]
section of the assignment file then this proc will look for a file with a “.HTM” or “.HTML” extension
for the current component in the directory specified by <directory> . It will then activate the default
web browser on this document using the Windows API “ShellExecute”.

Call: call HELP_PROC

Input params: $componentname - name of current form
$entname - name of current entity
$fieldname - name of current field

Return code: none

G.53. LMK_PROC - STANDARD PROC FOR THE <LEAVE MODIFIED KEY> TRIGGER

Inserted into the <LEAVE MODIFIED KEY> trigger of every database entity.

Call: call LMK_PROC

Return code: 0 = OK <0 = error >0 = warning

G.54. OK_PROC - STANDARD PROC FOR THE OK BUTTON OR <ACCEPT> TRIGGER

This issues a store to update the database. If the store is successful a commit is issued. If the
store fails a rollback is issued to undo all updates. If no errors are found and $$msgdata is not
empty, the POSTMESSAGE proc is called to send a message to another component (usually the
parent). Includes call to AUDIT_START and AUDIT_STOP.

Call: call OK_PROC

Input params: $$msgdst - passed to POSTMESSAGE proc
$$msgid - passed to POSTMESSAGE proc
$$msgdata - passed to POSTMESSAGE proc

Return code: if there is an error then return(-1) else exit(0).

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 25 version: 04.008.000

G.55. ON_ERROR_E - STANDARD PROC FOR THE <ON ERROR> TRIGGER FOR ALL ENTITIES

Inserted into every <on error> trigger for entities. Displays a message based on the contents of
$error. Calls DATA_ERROR to process the contents of $dataerrorcontext.

Call: call ON_ERROR_E

Return code: -1

G.56. ON_ERROR_F - STANDARD PROC FOR THE <ON ERROR> TRIGGER FOR ALL FIELDS

Inserted into every <on error> trigger for fields. Displays a message based on the contents of
$error. Calls DATA_ERROR to process the contents of $dataerrorcontext.

Call: call ON_ERROR_F

Return code: -1

G.57. PRINT_PROC - STANDARD PROC FOR THE <PRINT> TRIGGER (IF REQUIRED)

Executes the print/ask statement.

Call: call PRINT_PROC

Return code: 0 = OK <0 = error

G.58. QUIT_PROC - STANDARD PROC FOR THE CANCEL BUTTON OR <QUIT> TRIGGER

If there are any outstanding database changes the user will be asked confirm or cancel the quit. If
confirmed a ROLLBACK will be issued to undo any changes and release any locks before
terminating, otherwise the quit will be cancelled. The <quit> trigger will be fired in all child
instances, and if the operation is cancelled the child instance which generated the question will be
given focus.

Call: call QUIT_PROC

Return code: -1 = quit cancelled, else exit(1) to terminate the current form.

G.59. RETRIEVE_PROC - STANDARD PROC FOR THE <RETRIEVE> TRIGGER

Performs a retrieve, and issues a message if $status is not zero.

Call: call RETRIEVE_PROC

Return code: 0 = OK <0 = error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 26 version: 04.008.000

G.60. STORE_PROC - STANDARD PROC FOR THE <STORE> TRIGGER

Issues a store to update the database, followed by a commit or rollback as necessary, with the
corresponding message. If no errors are found and $$msgdata is not empty, the POSTMESSAGE
proc is called to send a message to another component. Includes call to AUDIT_START and
AUDIT_STOP.

Call: call STORE_PROC

Input params: $$msgdata - passed to POSTMESSAGE proc
$$msgdst - passed to POSTMESSAGE proc
$$msgid - passed to POSTMESSAGE proc

Return code: 0 = OK <0 = error

G.61. VLDK_PROC - STANDARD PROC FOR THE <VALIDATE KEY> TRIGGER

Checks for key not found (if $foreign is true) and duplicate key (if $foreign is false). If an error is
found an appropriate message is issued, and control is passed to the relevant <on_error> trigger.

Call: call VLDK_PROC

Return code: 0 = OK <0 = error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 27 version: 04.008.000

j) Validation / Verification

G.62. CHK_ITEM_ACCESS - DISABLE FIELDS WHICH ARE NOT ACCESSIBLE BY THE USER

Used in the <read> trigger of the main entity in specified forms. Checks the ITEM_ACCESS table
on the MENU database for the current form to see if any item-level security has been set up for the
security class of the logon user. If yes, then all the items (fields) identified as disallowed will be
made invisible and inaccessible to the user (including any associated field labels). If an entry on
ITEM_ACCESS is not found, or an item on the screen is not contained within the list then, by
default, it will not be disabled.

Call: call CHK_ITEM_ACCESS

Input params: none

Return code: none

G.63. CHK_READ_COUNT - PAUSE DATABASE RETRIEVAL AFTER A NUMBER OF RECORDS

Used in <read> trigger to issue a warning every $$read_limit records, giving the user the
opportunity to either terminate the retrieval, or to continue. If termination is chosen then release/e
is used to complete the hitlist at the current point. $$read_limit is obtained from the logicals
section in the .ASN file.

Call: call CHECK_READ_COUNT(read_count, read_limit)

Input params: read_count - usually held as $read_count$
read_limit - usually from $$read_limit

Output params: read_count - incremented for each record read

Return code: 0 = continue <0 = cancel

G.64. CHK_TAB_ACCESS – CHECK IF THE USER CAN ACCESS THE PAGES OF A TAB WIDGET

Checks that the user has been granted permission to access all the pages of a tab widget. It
examines the tab field’s valrep list (a series of ‘component=label’ pairs) and calls
CHK_TRAN_ACCESSQ for each component name in the list. If access to any component has not
been granted then that entry is removed from the list, which means that a tab for that component
will not appear and therefore cannot be selected.

Call: call CHK_TAB_ACCESS(fieldname)

Input params: fieldname - fieldname of the tab widget

Return code: 0 = OK -1 = access denied to all pages

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 28 version: 04.008.000

G.65. CHK_TRAN_ACCESS - CHECK IF THE USER CAN ACCESS A TRANSACTION

Checks that the current user has been granted permission to access a particular transaction. This
information is held on the menu database. An appropriate message is passed to the Message
Object.

Call: call CHK_TRAN_ACCESS(tran_id)

Input params: tran_id - transaction identity

Return code: 0 = OK -1 = access denied

G.66. CHK_TRAN_ACCESSQ - CHECK (QUIETLY) IF THE USER CAN ACCESS A TRANSACTION

Checks that the current user has been granted permission to access a particular transaction. This
information is held on the menu database. No message is passed to the Message Object.

Call: call CHK_TRAN_ACCESSQ(tran_id)

Input params: tran_id - transaction identity

Return code: 0 = OK -1 = access denied

G.67. VLDF_OBJSVC - VALIDATE FIELD/ENTITY VIA AN OBJECT SERVICE

This calls the object service that has been defined for the entity and either invokes validation for
the specified field or the entire occurrence if the fieldname is null. Any error messages as a result
of validation failures will be displayed by a call to GET_MESSAGE.

Call: call VLDF_OBJSVC(entname, fieldname)

Input params: entname - entity name
fieldname - field name (or null)

Return code: 0 = OK -1 = validation error

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 29 version: 04.008.000

k) Miscellaneous

G.68. DEFAULT_LANGUAGE – GET DEFAULT LANGUAGE FROM CONTROL FILE

Reads the MNU_CONTROL table for the default language code.

Call: call DEFAULT_LANGUAGE(language_code)

Input params: none

Output params: language_code

Return code: none

G.69. BUILD_PROC_LIST - BUILD LIST OF GLOBAL PROCEDURES

This should only be used in the form which is based on the VERSION component template.

G.70. DEBUG_PROC - DEFAULT PROC FOR THE <SWITCH KEYBOARD> TRIGGER

Used during system development to turn on the DEBUG feature. Will check against the user’s
security class to see if a password is required or not.

Call: call DEBUG_PROC

Return code: none

G.71. DECRYPT – DECRYPT A STRING

Decrypt a string in order to return it to a readable state. The key must be the same one that was
used to originally encrypt the string.

Call: call DECRYPT(key, string)

Input params: key - any string value
string - string to be decrypted

Output params: string - decrypted string

Return code: none

G.72. ENCRYPT – ENCRYPT A STRING

Encrypt a string using the variable key – this makes the string unreadable. To reverse the process
the encrypted string must be decrypted with the same key.

Call: call ENCRYPT(key, string)

Input params: key - any string value
string - string to be encrypted

Output params: string - encrypted string

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 30 version: 04.008.000

G.73. GET_SESSION_DATA – GET SESSION DATA FROM MENU LOGON

Gets session data which was set when the user logged on to the menu system. This is obtianed
from component MNU_H001 in the form of an associative list which is automatically loaded into
component variables. The possible item names are:

session_id (numeric)
session_logging (boolean)
message_logging (boolean)
logon_user (string)
default_language (string)
audit_logging (boolean)

Call: call GET_SESSION_DATA()

Input params: none

Output params: none

Return code: 0=OK <0 = error

G.74. GET_TRAN_DATA - GET TRANSACTION DATA FROM THE MENU DATABASE

Reads the Menu database to obtain details for the specified transaction, including any initial
values. Also obtains the contents of CHILD_PROPERTIES from the parent. This data is passed
back as an associative list. The transaction must be accessible to the current user.

Call: call GET_TRAN_DATA(tran_id, tran_data)

Input params: tran_id - transaction identity (component name)

Output params: tran_data - associative list

Return code: 0 = OK <0 = error (tran_data contains error message)

G.75. HELP_ABOUT - RUN THE HELP ABOUT FORM FOR THE CURRENT APPLICATION

Called from the HELP ABOUT option on the pulldown menu.
This activates a form with the name “_HELPA” prefixed by the contents of $variation.

Call: call HELP_ABOUT

Input params: $componentname - name of current form
$formtitle - title of current form
$form_version$ - version number from component variable

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 31 version: 04.008.000

G.76. OBJSVC_CLEAR - CLEAR OCCURRENCES FROM AN OBJECT SERVICE

This will clear all occurrences from an Object Service, causing all future reads to be refreshed from
the database.

Call: call OBJSVC_CLEAR(entname)

Input params: entname - name of entity to be cleared

Return code: none

G.77. PROC_VERSION - OBTAIN PROCEDURE VERSION NUMBER

This should only be used in the form which is based on the VERSION component template.

Call: call Procedure
call PROC_VERSION(“Procedure”,$procerrorcontext)

Input params: “Procedure” - the name of the procedure
$procerrorcontext - result of the call to Procedure

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 32 version: 04.008.000

G.78. READ_INNER_ENT – RETRIEVE INNER ENTITIES

This will retrieve all entities that are painted within the named entity. This is normally used in the
<async interrupt> trigger of List forms following the addition or modification of an occurrence.

Call: call READ_INNER_ENT(entname)

Input params: entname - the name of the starting entity

Return code: none

G.79. SOUNDEX – GENERATE A SOUNDEX KEY FROM A STRING

This will convert a name into a Soundex Key. This is usually used in a search screen as it helps to
identify similar sounding names, such as MARSTON, MARSDON and MARSDEN.

The format of the soundex key is 'Xnnn' where:
§ 'X' is the first letter of the name (this is not converted).
§ 'nnn' are the remaining letters converted into numbers.

The rules for converting letters into numbers are as follows:
§ Ignore the letters A, E, I, O, U, Y, W, and H
§ For each of the remaining letters assign a numeric value:

1 for the letters B, F, P, and V
2 for the letters C, G, J, K, Q, S, X, and Z
3 for the letters D and T
4 for the letter L
5 for the letters M and N
6 for the letter R

§ If adjacent assigned numeric values are equivalent, keep only the first occurrence.
§ If there are insufficient letters to produce a result containing 3 digits then pad with zeroes.

Call: call SOUNDEX(name, soundex)

Input params: name - the name string to be converted

Output params: soundex - in the format ‘Xnnn’.

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 33 version: 04.008.000

l) Audit Logging

G.80. AUDIT_BEFOREPROC – TAKE SNAPSHOT OF DATA BEFORE IT IS CHANGED

This will take a snapshot of the data for the occurrence before it is changed. This should be placed
in the entity’s <read> trigger. Includes call to AUDIT_EXCLUDE.

Call: call AUDIT_BEFOREPROC(“entname”,”modelname”,list,)

Input params: entname - the name of the entity
modelname - the name of the application model

Output params: list - the item name in which the data will be held

Return code: 0 = OK, <0 = error

G.81. AUDIT_AFTERPROC – WRITE CHANGED DATA TO AUDIT LOG

This will take a snapshot of the data for the occurrence when it is written to the database. This will
then post both the BEFORE and AFTER data to the audit object so an entry can be written to the
audit log. This should be placed in the entity’s <write> and <delete> triggers. Includes call to
AUDIT_EXCLUDE.

Call: call AUDIT_BEFOREPROC(“entname”,”modelname”,list, "trigger")

Input params: entname - the name of the starting entity
modelname - the name of the application model
list - the results of AUDIT_BEFOREPROC
trigger - the trigger identity

Return code: 0 = OK, <0 = error

G.82. AUDIT_EXCLUDE – EXCLUDE THOSE ITEMS NOT TO BE AUDITED

This will take the associative list produced by AUDIT_BEFOREPROC & AUDIT_AFTERPROC and
remove those items which are not to be audited. These items are:

characteristic = non-database
datatype = raw
datatype = image

Call: call AUDIT_EXCLUDE(list)

Input params: list - associative list obtained from an occurrence

Output params: list - same list with items removed

Return code: none

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 34 version: 04.008.000

Appendix H: GLOBAL VARIABLES - STANDARD ENTRIES

These are defined in library SYSTEM_LIBRARY.

VARIABLE NAME DATA
TYPE

DESCRIPTION

COMPONENT S component name (see ACTIVATE_PROC)
COUNT N general-purpose counter
DEBUG B debugging switch
ENTNAME S entity name
FIELDNAME S field name
FORMNAME S form name
FORM_SETTINGS S see procs FRGF_PROC and FRLF_PROC
INSTANCE S instance name (see ACTIVATE_PROC)
MENU_USER_ID S user identity from the logon screen
MSGDATA S message data (see POSTMESSAGE proc)
MSGDST S Message destination (see POSTMESSAGE proc)
MSGID S message identity (see POSTMESSAGE proc)
NAVIGATION_BUTTON S (reserved for future use)
OPERATION S operation name (see ACTIVATE_PROC)
PARAMS S parameter string (see ACTIVATE_PROC)
POPUP_FIELD_NAME S used by POPUP_LFLD and POPUP_BTN_DTL
POPUP_FIELD_VALUE $ used by POPUP_LFLD and POPUP_BTN_DTL
PROFILE S retrieve profile passed to a popup form, or from a selection

form to a display form
(a list of entries in format “fieldname=value”)

PROPERTIES S component properties (see ACTIVATE_PROC)
READ_LIMIT N record count (see CHK_READ_COUNT proc)
REFRESH_CHILDREN B used by REFRESH_CHILDREN proc
SELECTION S primary key of occurrence selected in a popup form

(a list of entries in format “fieldname=value”)
STATUS N holds $status
VERSION_ONLY B used by the form which display procedure version

numbers

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 35 version: 04.008.000

Appendix I: FORMAT FOR MESSAGE FILE ENTRIES

Entries in the central message file should be constructed as follows:-

B_<formname> Button text for NAVIGATION buttons, where

<formname> identifies the form which is activated by this button

B_<action> Button text for ACTION buttons, where

<action> identifies the action performed by this button

eg: OK, Cancel, Close, Retrieve, Store

G_<glyphname> Tooltip message for a glyph

H_<action> Hint text (for action buttons)

H_<formname> Hint text (for navigation buttons)

H_<fieldname> Hint text (for screen fields)

L_<fieldname> Field label, for a standard label applicable to all screens (this should be
set as the default value for the field label within the Application Model)

V_<fieldname> Valrep list associated with field <fieldname>

eg: radiobuttons, dropdownlists, etc

M_nnnnn Message (there is no distinction between errors or warnings)

M_<formname> Message to appear inside a form

Q_nnnnn Question (message requiring a response)

T_<formname> Form title, where <formname> identifies the form

When inserting entries into the message file it is advised to set the description field to the name of
the object (in upper case) to which the entry is associated. This will enable all entries relating to a
particular object to be selected more easily.

A set of standard messages is provided for use in your application, as listed in Appendix J:. These
will be located in library USYS. As they are used by the global procs which are located in
SYSTEM_LIBRARY they should not be altered. Any additional messages required by your
application should be defined within your application library.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 36 version: 04.008.000

Appendix J: GLOBAL MESSAGES - STANDARD ENTRIES

These are defined in library USYS with language USA. Substitutes or alternatives may be defined
within your individual application library.

NOTE: these messages will be prefixed by one of the following in order to denote their usage.

M_ = Message (no distinction between errors, warnings and information)
Q_ = Question, response required (uses askmess instead of message)

90001 STORE failed - see Message Frame for more details
90002 STORE successful
90003 No changes found - Store not executed
90004 RETRIEVE failed - invalid key passed from popup
90005 Nothing selected from popup
90006 RETRIEVE failed - see Message Frame for more details
90007 No entries were found matching this profile
90008 This function has been disabled
90009 This action is not valid on an empty occurrence
90010 This is a database occurrence - value cannot be changed
90011 This is a database occurrence - entry cannot be deleted
90012 You must CLEAR the screen before attempting a RETRIEVE
90013 Cannot delete - subordinate entries exist on %%$entname
90014 STORE failed in form %%$instancename, status = %%$status, entity = %%$entname
90015 ERASE failed - see Message Frame for more details
90016 ERASE not allowed
90017 Erase successful
90018 Controls released - data available as default for new input
90019 No help text found for %%$1
90020 Entry not found
90021 Access to this function has been disallowed
90022 You are not allowed to switch focus to another form
90023 PROC ERROR - see message frame for details
90030 Start Date cannot be later than End Date
90031 Start Date cannot be later than End Date of first %%$1
90032 Start Date must be later than Start Date of previous entry
90033 Start Date must be later than End Date of previous entry
90034 Start Date must be 1 day after End Date of previous entry
90035 Cannot amend Start Date of first entry
90036 End Date cannot be earlier than Start Date
90037 End Date cannot be earlier than Start Date of last %%$1
90038 End Date must be earlier than Start Date of next entry
90039 End Date must be earlier than End Date of next entry
90040 End Date must be 1 day before Start Date of next entry
90041 Cannot amend End Date of last entry
90042 End Date cannot be later than End Date of %%$1
90043 FROM date cannot be later than TO date
90044 TO date cannot be earlier than FROM date
90045 TO date is invalid without a FROM date
90046 Start Date cannot be earlier than Start date of %%$1
90047 Object Service not defined - validation not performed
90048 Validate Operation not defined in Object Service - validation not performed

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 37 version: 04.008.000

90049 Object Service has not been defined for entity %%$1
91000 Security Violation
91001 Access to function %%$1 has not been granted
91002 There are no transactions available on this menu
91003 Transaction %%$1 is unknown to system
91004 Transaction %%$1 has been disabled
91005 Form %%$1 cannot be activated - see message frame for details
91006 Unknown Transaction Type (%%$1)
91007 Action invalid - transaction %%$1 is not a menu
91008 Action invalid - transaction %%$1 is not online
91009 Action not allowed until Item List has been created
91010 Action not allowed - transaction %%$1 is not on a menu
91011 Only characters "A", "9" and "X" are allowed
91012 New Password cannot be identical to current Password
91013 Repeat Password Must be same as New Password
91014 Password must be at least %%$1 characters long
91015 Password format must be "%%$1"
91016 This User ID is in use - multiple logons not allowed
91017 This User has been disabled
91018 A Menu cannot be added to itself.
91019 Action invalid - this Security Class has global access switched ON
91020 Cannot change Transaction Type from MENU as menu contents exist
91021 The action you have requested is restricted. Please enter a valid password to continue.
91022 There are no tabs available on this page
91023 INSTANCE_NAME: Found '(' with no matching ')'
91024 INSTANCE_NAME: No field name found between '(' and ')'
91025 INSTANCE_NAME: No field found in $$params with name '%%$1'
91026 Retry Count has been exceeded - logon aborted
91027 No data extracted from file %%$1
91028 %%$count$ records loaded from file %%$1
91029 Data does not contain entity name
91030 Cannot create entity %%$1
91031 %%$count$ records have been processed
91032 %%$count$ records extracted from %%$1
91033 Cannot initialise file %%$1
91034 This action is only valid if Transaction Type is ONLINE
91035 $SELECT_TRAN$ has not been defined for this transaction
91036 Entry must be pre-selected if $CHANGE_ALLOWED$ = NO
91037 Action is invalid if $CHANGE_ALLOWED$ = NO
91038 Characters '{|};' not allowed in passwords
91039
91040 Entry on %%$1 no longer exists - cannot continue
91041 Warning - more than %%$1 records found

Q90001 Changes have been detected - do you really wish to Quit ?
Q90002 Do you really wish to delete this entry ?
Q90003 Do you really wish to delete this entry (and all its subordinate entries) ?
Q90004 %%$1 records have been read - do you wish to read more ?
Q90005 Do you REALLY wish to reload data from %%$1 ?
Q90006 Do you wish to replace existing data ?

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 38 version: 04.008.000

Appendix K: DIALOG TYPES - STANDARD VALUES

These dialog types are used in forms that interact with the user. Different dialog types that act
upon the same object should share the same sequence number so that the “family” of forms can
be readily identified.

Code Description

A Auxiliary (data passed as parameters, and not retrieved from the database)
C Create/Add a single occurrence
D Delete a selected occurrence
L List/Browse multiple occurrences in summary form
M Multi-Purpose (Create/Read/Update/Delete on multiple occurrences)
P Popup (Picklist)
R Read/Enquire a single occurrence
S Select (enter selection criteria) prior to a List
U Update/Modify a single occurrence

Special types are used where there is no dialog with the user. These codes appear in front of the
sequence number as there is usually no connection with any “family” of forms that share the same
sequence number.

Code Description

H Hidden (no user dialog, usually implemented as a Service component)

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 39 version: 04.008.000

Appendix L: MENU BARS - STANDARD ENTRIES

These objects are defined in the USYS library.

Menu Bar Menu Option

MAIN_MENU FILE Clear
Retrieve
Accept
Store
Detail
Print
Write to File
Fetch File
Quit

EDIT Cut
Copy
Paste
Add Occurrence
Insert Occurrence
Remove Occurrence
Erase
Profile
Find Text
Font – Underline

- Bold
- Italic

VIEW First Occurrence
Prev Occurrence
Next Occurrence
Last Occurrence
Next Frame
Prev Frame
Zoom
Quick Zoom
Panel

APPLICATION Sort Ascending
Sort Descending
Refresh Children
Delete Children

HELP Show Help
About Program
Keyboard Help
Message Frame
Debug

HELP_MENU FILE (see above)

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 40 version: 04.008.000

Appendix M: PANELS - STANDARD ENTRIES

These objects are defined in the USYS library.

Panel Option

SESSION Clear
Retrieve
Detail
Store
Accept
Quit
First Occurrence
Prev Occurrence
Next Occurrence
Last Occurrence
Message Frame
Zoom
Help

POPUP Accept
Detail
Quit
Message
Zoom

The floating session panel is usually disabled. Options that are available to transactions are usually
made available on the action bar at the bottom of the screen.

The popup panel is activated with a mouse button, and is available within all functions.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 41 version: 04.008.000

Appendix N: GLOBAL CONSTANTS - STANDARD ENTRIES

The following global constants are defined in library SYSTEM_LIBRARY:

Name Expression Description
FATAL_ERROR -99999 to be set when $PROCERROR is

returned with a non-zero value.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 42 version: 04.008.000

Appendix O: INCLUDE PROCS - STANDARD ENTRIES

The following include procs are defined in library STD. There are to be used in services and
reports to provide local versions of global procs as these types of component cannot access any
global objects. In some cases these are direct copies of the global proc, while in others the
behaviour has been modified to work in self-contained components.

Name Description
ALL includes all these procs in a single statement
ASSOC_TO_INDEXED convert an ASSOCIATIVE list into 2 INDEXED lists
CHK_INST_NAME check instance name for valid characters
DATA_ERROR process the contents of $DATAERRORCONTEXT
DECRYPT decrypt a text string
DELETE_CHILDREN delete instance children
DISABLE mark a trigger as disabled
ENCRYPT encrypt a text string
EXAMINE_REPLACE examine STRING replacing "old" with "new"
FATAL_ERROR tests $PROCERROR and $STATUS for a fatal error
GET_MESSAGE empty proc for services
HELP_PROC default proc for the <HELP> trigger
LMK_PROC empty proc for services
LMK_TRIGGER default code for the <LEAVE MODIFIED KEY> trigger
NEW_INST_PROC create new instance
ON_ERROR_E <ON ERROR> trigger for entities
ON_ERROR_F <ON ERROR> trigger for fields
POSTMESSAGE post a message back to the parent form
PRINT_LIST put contents of associative list in message frame
PROC_ERROR process the contents of $PROCERRORCONTEXT
SET_ERROR add a message (type = ‘E’) to the Message Object
SET_FATAL add a message (type = ‘F’) to the Message Object
SET_INFO add a message (type = ‘I’) to the Message Object
SET_WARNING add a message (type = ‘W’) to the Message Object
STOREQ_PROC <STORE> trigger, quiet mode (no message)
STORE_NO_COMMIT <STORE> without commit
VLDF_OBJSVC validate field via an object service

(to be used in <leave field> or <validate field> trigger)
VLDK_PROC <validate key> processing
VLDK_TRIGGER default code for the <VALIDATE KEY> trigger
VLDO_OBJSVC validate occurrence via an object service

(to be used in <leave mod occ> or <validate occ> trigger)

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 43 version: 04.008.000

Appendix P: CHECKLIST FOR CREATING A NEW APPLICATION

ITEM TICK

1) Decide on Application Mnemonic to be used as a prefix in all component names.
2) Create a Library for the application with a name which is either the same as the

application name, or using the prefix for component names chosen in point (1).
3) Create global variable FIRST_TIME_FLAG in this library.
4) Copy INIT_PROC from SYSTEM_LIBRARY and customise it for the new

application. The contents of $variation must be changed to the library name
chosen in point (2).

5) Create an application model (see next section).
6) Create a HELP ABOUT screen from component template CT_HELPA.
7) Create a HELP screen from component template CT_HELP.
8) Create a HELP Text Maintenance screen from component template CT_HELPM.
9) Create a Data Unload screen from component template CT_UNLOAD.
10) Create a Data Reload screen from component template CT_RELOAD.
11) Create a Proc Version screen from component template CT_VERSION.
12) Create a closedown screen from component template CT_CLOSE1.
13) Create a Menu database for the Application, and begin to define transactions and

create menu screens.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 44 version: 04.008.000

Appendix Q: CHECKLIST FOR CREATING A NEW APPLICATION MODEL

ITEM TICK

1) Create a dummy entity called ACTION_BAR, or better still copy the one from
XAMPLE.

2) Create a dummy entity called NAVIGATION_BAR. Define as fields all those
components that are liable to be activated from navigation buttons. Use field
template PUSHBUTTON as this contains all the default settings.

3) Create a dummy entity called RETRIEVE_PROFILE. Define as fields all those
items that will be available via this mechanism.

4) For each field specify a LABEL value.
5) Create a message file entry for each field label.
6) For each entity that will be used in a popup form add a dummy field for the popup

button. Use field template POPUP_BUTTON.
7) For each entity that will be used in a popup form use field template POPUP_FIELD

to define the defaults for the description field. Set the correct name for the popup
form.

UNIFACE Development Guidelines (Internals)

24 February 2002 Appendix Page 45 version: 04.008.000

Appendix R: CHECKLIST FOR CREATING A NEW UNIFACE COMPONENT

ITEM TICK

1) Create component using specified component template.
2) Ensure Window Properties are correct.
3) Ensure Component Properties are correct.
4) In Component Properties set DESCRIPTION.
5) In Component Properties set TITLE.
6) In Component Properties set LIBRARY.
7) In Component Properties change COMMENTS as appropriate.
8) Check LOCAL CONSTANTS.
9) Check LOCAL VARIABLES.
10) Create message file entry for form title.
11) Create message file entry for this form’s navigation button text.
12) Create message file entry for this form’s navigation button hint text.
13) Check detail trigger of each navigation button used within this form.
14) Create transaction details on the Menu database.
15) Add transaction tp appropriate menu(s).
16) Create Help text for the component.
17) Create help text for each field within the component.

